SSR 마커에 의한 한국 원산 Soja 아속의 다양성과 지리적 유연관계

Diversity and Geographical Relationships by SSR Marker in Subgenus Soja Originated from Korea

  • 조양희 (농촌진흥청 농업생명공학연구원) ;
  • 윤문섭 (농촌진흥청 농업생명공학연구원) ;
  • 이정란 (농촌진흥청 농업생명공학연구원) ;
  • 백형진 (농촌진흥청 농업생명공학연구원) ;
  • 김창영 (농촌진흥청 농업생명공학연구원) ;
  • 김태산 (농촌진흥청 농업생명공학연구원) ;
  • 조은기 (농촌진흥청 연구개발국) ;
  • 이희봉 (충남대학교 식물자원학부)
  • Cho Yang-Hee (National Institute of Agricultural Biotechnology, RDA) ;
  • Yoon Mun-Sup (National Institute of Agricultural Biotechnology, RDA) ;
  • Lee Jeong-Ran (National Institute of Agricultural Biotechnology, RDA) ;
  • Baek Hyung-Jin (National Institute of Agricultural Biotechnology, RDA) ;
  • Kim Chang-Yung (National Institute of Agricultural Biotechnology, RDA) ;
  • Kim Tae-San (National Institute of Agricultural Biotechnology, RDA) ;
  • Cho Eun-Gi (Research & Development Bureau, RDA) ;
  • Lee Hee-Bong (College of Agriculture and Life Sciences, Chungnam National University)
  • 발행 : 2006.06.01

초록

우리나라에서 자생하는 야생콩(Glycine soja) 81점과 재래종 콩(G. max) 130점에 대해 7개의 SSR 마커의 다형성을 통해 두 종간의 변이를 조사하고 지리적 유연관계를 분석한 결과를 요약하면 다음과 같다. 1. 전체 두종에서 총 144 개의 대립인자(평균 20.6개)를 확인하였고, 각 유전자좌별 복수 대립인자수는 $13{\sim}41$개로 나타났다. 각 종별 대립인자수로 야생콩은 총 117개의 대립인자수(평균 16.7개)를 나타냈으며 재래종 콩은 총 69개의 대립인자(평균 9.9개)를 나타냈고, 두종간에 서로 공유된 대립인자수는 총 42개였다. 2. 전체 두종에 대한 유전자좌별 유전자 다양성 값 범위는 0.69(Satt141)${\sim}0.96$(Sat_074)이었다. 또한 전체 다양성 값은 0.81을 나타냈고 야생콩은 0.88, 재래종 콩은 0.69였다. 3. 야생콩과 재래종 콩의 유전적 변이에서 SSR 분석에 의한 정준판별분석 결과, Canl(84.2%)에 의해 좌측은 G. soja(I군), 우측은 G. max(II군) 그리고 두 종이 서로 중복되는 군(III군)으로 구분되었으며, 유전적 기저가 넓은 야생콩이 재래종에 비해 변이가 크게 나타났다. 4. 야생콩의 지리적 유연관계는 2개의 군으로 구분되었는데 I군은 강원, 경상, 전라, 충청도 지역이, II군에는 경기도 지역이 독립된 군을 형성하였으며, I군내에서는 강원도와 경상도 지역이, 그리고 전라도와 충청도 지역이 각각 같은 군을 형성하였다. 재래종 콩도 2개의 군으로 구분되었는데 I군에는 강원도, 경기도, 경상도 지역이, II군에는 전라도, 충청도 지역이 포함되었다. 또한, I군내에서는 경상도 지역이 독립된 군을 형성하였으며, 강원도와 경기도 지역이 강한 유연관계를 나타냈다.

This study was carried out to investigate polymorphism, gene diversity, and geographical relationships of 81 Korean wild (Glycine soja) and 130 cultivated soybeans (G. max) using seven simple sequence repeat (SSR) markers. A total of 144 alleles were observed in 211 accessions with an average of 20.6. Each SSR loci showed 13 (Satt532) to 41 (Sat_074) multialleles. The range of alleles within the loci was wider in wild soybean than the cultivated soybeans. The average genetic diversity values were 0.88 and 0.69 in wild and cultivated soybeans, respectively. In a scatter diagram of wild and cultivated soybeans based on canonical discriminant analysis, CAN1 accounted for 84.2% while CAN2 did 8.5%. Two species were grouped into three: group I (G. max), group II (G. soja), and group III (complex of G. max and G. soja). The geographical relationships of wild soybean were distinguished into two groups: Gyeonggi for Group I, and Gyeongsang, Jeolla, Gangwon, and Chungcheong for Group II. Those of cultivated soybeans were distinguished into Gyeonggi, Gangwon, and Gyeongsang for Group I, and Jeolla and Chungcheong for Group II. Therefore, the geographical relationships of wild soybeans were well typified based on the ecosystems of the Korean peninsula.

키워드

참고문헌

  1. Abe, J., A. Hasegawa, H. Fukushi, T. Mikami, M. Ohara, and Y. Shimamoto. 1999. Introgression between wild and cultivated soybeans of Japan revealed by RFLP analysis of chloroplast DNAs. Econ. Bot. 53 : 285-291 https://doi.org/10.1007/BF02866640
  2. Akkaya, M. S., A. A. Bhagwat, and P. B. Cregan. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132 : 1131-1139
  3. Cregan, P. B., M. S. Akkaya, A. A. Bhagwat, U. Lavi, and J. Rongwen. 1994. Length polymorphism of simple sequence repeat (SSR) DNA as molecular markers in plants. In Plant Genome Analysis. Current Topics in Plant Molecular Biology. Gresshoff P.M. (ed), CRC press, New York
  4. Diwan, N. and P. B. Cregan. 1997. Automated sizing of fluorescent-labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor. Appl. Genet. 95 : 723-733 https://doi.org/10.1007/s001220050618
  5. Dong, Y. S., L. M. Zhao, B. Liu, Z. W. Wang, Z. Q. Jin, and H. Sun. 2003. The genetic diversity of cultivated soybean grown in China. Theor. Appl. Genet. 108 : 931-936
  6. Dong, Y. S., B. C. Zhuang, L. M. Zhao, H. Sun, and M. Y. He. 2001. The genetic diversity of annual wild soybean grown in China. Theor. Appl. Genet. 103 : 98-103 https://doi.org/10.1007/s001220000522
  7. Harlan, J. R. and J. M. J. de Wet. 1971. Toward a rational classification of cultivated plants. TAXON 20(4) : 509-517 https://doi.org/10.2307/1218252
  8. Hymowitz, T. 1970. On the domestication of the soybean. Econ. Bot. 24 : 408-421 https://doi.org/10.1007/BF02860745
  9. Hymowitz, T. and N. Kaizuma. 1981. Soybean seed protein electrophoresis profiles from 15 Asian countries or regions: Hypotheses on paths of dissemination of soybeans in China. Econ. Bot. 35 : 10-23 https://doi.org/10.1007/BF02859210
  10. Kwon, S. H., K. H. Im, and J. R. Kim. 1972. Studies on diversity of seed weight in the Korean soybean land races and wild soybean. Korean J. Breeding 4(1) : 70-74
  11. Kollipara, K. P., R. J. Singh, and T. Hymowitz. 1997. Phylogenetic and genomic relationships in the genus Glycine Willd. based on sequences from the ITS region of nuclear rDNA. Genome 40 : 57-68 https://doi.org/10.1139/g97-008
  12. Li, Z. and R. L. Nelson. 2002. RAPD marker diversity among cultivated and wild soybean accessions from four Chinese provinces. Crop Sci. 42 : 1737-1744 https://doi.org/10.2135/cropsci2002.1737
  13. Maughan, P. J., M. A. Saghai Maroof, and G. R. Buss. 1995. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome 38 : 715-723 https://doi.org/10.1139/g95-090
  14. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. (USA) 70 : 3321-3323
  15. Perry, M. C. and M. S. McIntosh. 1991. Geographical patterns of variation in the USDA soybean germplasm collection: I. Morphological traits. Crop Sci. 31 : 1350-1355 https://doi.org/10.2135/cropsci1991.0011183X003100050054x
  16. Perry, M. C., M. S. Mcintosh, and A. K. Stoner. 1991. Geographical patterns of variation in the USDA soybean germplasm collection: II. Allozyme frequencies. Crop Sci. 31 : 1356-1360 https://doi.org/10.2135/cropsci1991.0011183X003100050055x
  17. Rongwen, J., M. S. Akkaya, A. A. Bhagwat, U. Lavi, and P. B. Cregan. 1995. The use of microsatellite DNA markers for soybean genotype identification. Theor. Appl. Genet. 90 : 43-48
  18. Shimamoto, Y., J. Abe, Z. Gao, J. Gai, and F. S. Thseng. 2000. Characterizing the cytoplasmic diversity and phyletic relationship of Chinese landraces of soybean, Glycine max, based on RFLPs of chloroplast and mitochondrial DNA. Genet. Resour. Crop Evol. 47 : 611-617 https://doi.org/10.1023/A:1026538907387
  19. Shimamoto, Y., A. Hasegawa, J. Abe, M. Ohara, and T. Mikami. 1992. Glycine soja germplasm in Japan: isozyme and chloroplast DNA variation. soybean Genet. Newsl. 19 : 73-77
  20. Singh, R. J. and T. Hymowitz. 1988. The genomic relationships between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. As revealed by pachytene chromosome analysis. Theor. Appl. Genet. 76 : 705-711 https://doi.org/10.1007/BF00303516
  21. Xu, D. H., J. Abe, J. Y. Gai, and Y. Shimamoto. 2002. Diversity of chloroplast DNA SSRs in wild and cultivated soybean: evidence for multiple origins of cultivated soybean. Theor. Appl. Genet. 105 : 645-653 https://doi.org/10.1007/s00122-002-0972-7
  22. Xu, D. H., J. Abe, M. Sakai, and A. Kanazawa, and Y. Shimamoto. 2000. Sequence variation of non-coding regions of chloroplast DNA of soybean and related wild species and its implications for the evolution of different chloroplast haplotypes. Theor. Appl. Genet. 101 : 724-732 https://doi.org/10.1007/s001220051537
  23. Yoon, M. S., J. W. Ahn, S. J. Park, H. J. Baek, N. K. Park, and Y. D. Rho. 2000a. Geographical patterns of morphological variation in soybean Glycine max (L.) Merrill germplasm. Korean J. Crop Sci. 45(4) : 267-271
  24. Yoon, M. S., J. W. Ahn, J. H. Kang, H. J. Baek, N. K. Park, and Y. D. Rho. 2000b. Genotypic and geographical variations of ${\beta}-amylase$ isozyme in soybean land races by isoelectric focusing (IEF). Korean J. Crop Sci. 45(1) : 139-142
  25. Park, K. S. and M. S. Yoon. 1997. Variation of leucine aminopeptidase isozyme in Korean land races and wild soybeans. Korean J. Crop Sci. 42(2) : 129-133