해석모델의 불확실성을 고려한 교량의 손상추정기법

Damage Detection of Bridge Structures Considering Uncertainty in Analysis Model

  • 이종재 (한국과학기술원 건설 및 환경공학과) ;
  • 윤정방 (한국과학기술원 건설 및 환경공학과)
  • 발행 : 2006.06.01

초록

교량의 손상추정을 위한 구조계 규명기법은 신호취득시스템 및 정보처리기술의 발전과 함께 최근에 많은 연구개발이 이루어지고 있다. 신경망기법이나 유전자 알고리즘과 같은 소프트컴퓨팅 기법은 뛰어난 패턴인식성능 때문에 손상추정 문제에 활발히 활용되고 있다. 본 연구에서는 모드계수를 활용한 신경망기법기반 손상추정을 수행하였으며, 신경망을 훈련시키기 위한 훈련패턴을 생성하는 해석모델에서의 불확실성을 효과적으로 고려할 수 있는 방법을 제시하였다. 해석모델의 불확실성 대하여 민감하지 않은 입력자료인 손상 전 후의 모드형상의 차 또는 모드형상의 비를 신경망의 입력자료로 활용하였다. 단 순보와 다주형교량에 대한 수치예제를 통하여 본 연구에서 제시한 기법의 타당성 및 적용성을 검증하였다.

The use of system identification approaches for damage detection has been expanded in recent years owing to the advancements in data acquisition system andinformation processing techniques. Soft computing techniques such as neural networks and genetic algorithm have been utilized increasingly for this end due to their excellent pattern recognition capability. In this study, damage detection of bridge structures using neural networks technique based on the modal properties is presented, which can effectively consider the modeling uncertainty in the analysis model from which the training patterns are to be generated. The differences or the ratios of the mode shape components between before and after damage are used as the input to the neural networks in this method, since they are found to be less sensitive to the modeling errors than the mode shapes themselves. Two numerical example analyses on a simple beam and a multi-girder bridge are presented to demonstrate the effectiveness and applicability of the proposed method.

키워드

참고문헌

  1. 김정태, 류연선, 조현만(2002) 고유진동수 이용 손상추정법과 모드형상 이용 손상추정법에 의한 PSC 보의 비파괴 손상검색, 한국전산구조공학회논문집, 15(1), pp. 1229-3059
  2. 박승희, 윤정방, 노용래(2004) 강 구조물의 손상 검색을 위한 램 웨이브와 웨이브렛 계수의 효율적인 사용, 한국전산구조공학회 학술발표논문집, pp.429-436
  3. 윤정방, 장신애, 심성한, 이종재(2002) Hilbert-Huang Transform을 이용한 교량구조물의 손상추정기법, 한국전산구조공학회 가을 학술발표회 논문집 pp.453-458
  4. Chase, S.B., Aktan, A.E. (eds.)(2001) Health Monitoring and Management of Civil Infrastructure Systems. SPIE Vol. 4337
  5. Chou, J. H., Ghaboussi, J. (2001) Genetic Algorithm in Structural Damage Detection. Computers and Structures, 79. pp.1335-1353 https://doi.org/10.1016/S0045-7949(01)00027-X
  6. Doebling, S. W., Farrar. C. R., Prime. M. B. (1998) A Summary Review of Vibration-Based Damage Identification Methods. the Shock and Vibration. Digest. 30(2). pp.91-105
  7. Gawronski, W., Sawicki. J. T. (2000) Structural Damage Detection Using Modal Norms. Journal of Sound and Vibration. 229(1), pp.194-198 https://doi.org/10.1006/jsvi.1999.2179
  8. Ko, J. M., Chak, K. K., Wang, J. Y., Ni. Y. Q., Chen. T.H.T. (2003) Formulation of an uncertainty model relating modal parameters and environmental factors by using long-term monitoring data. Smart Systems and Nondestructive Evaluation for Civil Infrastructures. S.-C. Liu (ed.). SPIE Vol. 5057
  9. Lee, J. W., Kim, J. D., Yun, C. B., Yi, J. H., Shim, J. M. (2002) Health-Monitoring Method for Bridges under Ordinary Traffic Loadings. Journal of Sound and Vibration. 257(2). pp.247-264 https://doi.org/10.1006/jsvi.2002.5056
  10. Masri, S. F., Smyth, A. W.. Chasaiakos, A. G., Nakamura, M., Caughey, T. K.(1999) Training Neural Networks by Adaptive Random Search Techniques, Journal of Engineering Mechanics. 125(5). pp.123-132 https://doi.org/10.1061/(ASCE)0733-9399(1999)125:2(123)
  11. Matsuoka, K. (1992) Noise injection into inputs in back-propagation learning. IEEE Transaction of Systems. Man. and Cybernetics. 22(3). pp.436-440 https://doi.org/10.1109/21.155944
  12. Ni, Y. Q., Wang, B. S., Ko. J. M.(2002) Constructing input vectors to neural networks for structural damage identification, Smart Materials and Structures, 11, pp.825-833 https://doi.org/10.1088/0964-1726/11/6/301
  13. Ni, Y. Q., Zhou, X. T., Ko, J. M., Wang, B. S. (2000) Vibration-based damage localization in Ting Kau Bridge using probabilistic neural network, Advances in Structural Dynamics,J.M. Ko and Y. L. Xu (eds.): Elsevier Science Ltd., Oxford, UK, Vol. II, pp.1069-1076
  14. Quek, S. T., Wang, Q., Zhang, L., Ong. K, H. (2001) Practical Issues in the Detection of Damage in Beams Using Wavelets. Smart Materials and Structures, 10, pp.1009-1017 https://doi.org/10.1088/0964-1726/10/5/317
  15. Sampaio, R. P. C., Maia, N. M. M., Silva, J. M. M. (1999) Damage Detection Using The Frequency Response-Function Curvature Method, Journal of Sound and Vibration, 226(5), pp.1029-1042 https://doi.org/10.1006/jsvi.1999.2340
  16. Szewczyk, Z. P., Haiela. P.(1994) Damage detection in structures based on feature-sensitive neural networks, Journal of Computing in Civil Engineering. ASCE, 8(2), pp.163-178 https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(163)
  17. Wu, X.. Ghaboussi, J., Garret, J.H., Jr.(1992) Use of neural networks in detection of structural damage, Computers and Structures, 42(4), pp.649-659 https://doi.org/10.1016/0045-7949(92)90132-J
  18. Yun, C. B., Bahng. E. Y.(2000) Substructural identification using neural networks, Computers and Structures, 77(1), pp.41-52 https://doi.org/10.1016/S0045-7949(99)00199-6
  19. Yun, C. B.. Yi, J. H.. Bahng, E. Y.(2001) Joint Damage Assessment of Framed Structures Using Neural Networks Technique, Engineering Structures, 23(5), pp.425-435 https://doi.org/10.1016/S0141-0296(00)00067-5
  20. Zou, J., Chen. J., Pu, Y. P., Zhong, P.(2002) On the wavelet time-frequency analysis algorithm in identification of a cracked rotor, Journal of Strain Analysis, 37(3), pp.239-246 https://doi.org/10.1243/0309324021514998
  21. Zou. Y., Tong. L., Steven. G. P.(2000) Vibration-Based Model-Dependent Damage (Delamination) Identification and Health Monitoring For Composite Structures - A Review, Journal of Sound and Vibration, 230(2), pp.357-378 https://doi.org/10.1006/jsvi.1999.2624