참고문헌
- G. I. Bell, Predator-prey of equations simulating an immune response, Math. Bioscience 16 (1973), 291-314 https://doi.org/10.1016/0025-5564(73)90036-9
- L. A. Cherkas and L. I. Zhilevich, Some test for the absence or uniqueness of limit cycles, Differencial nye Uravnenija 6 (1970), 1170-1178
- J. Cronin, Differential Equations, Introduction and Qualitative Theory, Marcel Dekker, New York, 1994
- L. Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math. 143 (2001), no. 3, 449-497 https://doi.org/10.1007/PL00005798
- X. C. Huang, Limit cycles in a continuous fermentation model, J. Math. Chem. 5 (1990), no. 3, 287-296 https://doi.org/10.1007/BF01166359
- X. C. Huang, Uniqueness of limit cycles in a predator-prey model simulating an im- mune response, Internat. J. Systems Sci. 22 (1991), no. 3, 579-585 https://doi.org/10.1080/00207729108910634
- X. C. Huang and S. Merrill, Conditions for uniqueness of limit cycles in general predator-prey systems, Math. Biosci. 96 (1989), no. 1, 47-60 https://doi.org/10.1016/0025-5564(89)90082-5
- X. Huang and L. Zhu, Limit cycles in a general Kolmogorov model, Nonlinear Anal. Theory 60 (2005), no. 8, 1393-1414 https://doi.org/10.1016/j.na.2004.11.003
- X. Huang and L. Zhu, A study of a general Kolmogorov model, J. Yangzhou Polytechnic University 8 (2004), no. 1, 20-32
- Y. Ilyashanko and S. Yakovenko, Concerning the Hilbert 16th problem, Amer. Math. Soc. Transl. Ser. 2, 165, Amer. Math. Soc., Providence, RI, 1995
- E. Kuno, Mathematical models for predator-prey interaction, Advances in Eco- logical Research 16 (1987) 252-265
- B. Y. Li and Z. F. Zhang, A note on a result of G. S. Petrov about the weakened 16th Hilbert problem, J. Math. Anal. Appl. 190 (1995), no. 2, 489-516 https://doi.org/10.1006/jmaa.1995.1088
- R. M. May, Limit cycles in predator-prey communities, Science 177 (1972) 900- 902 https://doi.org/10.1126/science.177.4052.900
- R. M. May, Stability and Complexity in Model Ecosystems, Princeton University, Princeton, NJ, 1974
- S. S. Pilyugin and P. Waltman, Multiple limit cycles in the chemostat with variable yield, Math. Biosci. 182 (2003), no. 2, 151-166 https://doi.org/10.1016/S0025-5564(02)00214-6
- Y. X. Qian, On Integral Surfaces Defined by Ordinary Differential Equations, Northwest University press, Xian, 1985
- R. Roussaire, Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Prob- lem, Springer-Verlag, New York, 1998
- C. Shen and B. Q. Shen, A necessary and sufficient condition of the existence and uniqueness of the limit cycles for a class of prey-predator system with spasrse effect, J. Biomath. 18 (2003), no. 2, 207-210
- Y. Q. Ye, S. L. Wang, and X. A. Yang, Theory of Limit Cycles, Amer. Math. Soc. Providence, R. I., 1986
- J. B. Zheng, Z. X. Yu, and J. T. Sun, Existence and uniqueness of limit cycle about prey-predator system with sparse effect, J. Biomath. 16 (2001), no. 2, 156- 161
피인용 문헌
- Limit cycles for two families of cubic systems vol.75, pp.18, 2012, https://doi.org/10.1016/j.na.2012.07.012
- Stability and bifurcation in two species predator–prey models vol.12, pp.1, 2011, https://doi.org/10.1016/j.nonrwa.2010.06.023
- Multi-dynamics of travelling bands and pattern formation in a predator-prey model with cubic growth vol.2016, pp.1, 2016, https://doi.org/10.1186/s13662-016-0994-0