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LIMIT CYCLES IN A CUBIC
PREDATOR-PREY DIFFERENTIAL SYSTEM

XUNCHENG HUANG, YUANMING WANG, AND ANSHENG CHENG

ABSTRACT. We propose a cubic differential system, which can be
considered a generalization of the predator-prey models, studied by
many authors recently (see [18, 20], for instance). The properties of
the equilibrium points, the existences, nonexistence, the uniqueness
conditions and the relative positions of the limit cycles are inves-
tigated. An example is used to show our theorems are easy to be
used in applications.

1. Introduction

Since the very famous papers of Poincaré (1881, 1882, 1885, 1886),
the concept of limit cycle has been attracted attentions from many math-
ematicians. Even in the famous speech entitled: “Mathematical Prob-
lems”, given by David Hilbert at the Second International Congress of
Mathematicians, Paris 1900, the limit cycle was one of the important
topics. In Hilbert 23 Problems, the 16th, is on limit cycles - finding the
maximum number of limit cycles of the differential equations:

Ecll% = Xn(x,y), '((11_:,: = Yn(may)a
where X,(z,y) and Y,(z,y) are polynomials whose degrees are not
greater than n.

Then in the 1930s’, van der Pol and Andronov showed that the closed
orbit in the phase plane of a self-sustained oscillation occurring in a
vacuum tube circuit was a limit cycle as considered by Poincaré. After
that, the existence, nonexistence, uniqueness and other properties of
limit cycles have been studied extensively by scientists in all fields in
addition to mathematicians, (see, for instance, Ye, et al. [19], Qin [16].)
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The study of limit cycles normally includes two aspects: one is the ex-
istence, stability and instability, number and relative positions of limit
cycles, and the other is the creating and disappearing of limit cycles
along with the varying of the parameters in system (e.g. bifurcation).
For the exact number of limit cycles and their relative positions, the
known results are not many because determining the number and posi-
tions of limit cycles is not easy. That is the reason why the 16th Hilbert
problem still remains open even for the case when n = 2 after one hun-
dred years, although some important progress has been made recently
4], 20], [12], [16], [17).

The development of the qualitative analysis of ordinary differential
equations is derived not only by the Hilbert Problems but also by the
study of the nonlinear oscillations in many other fields, such as discon-
tinuous automatic control systems [16], bio-chemical reactions [5], [7],
[15], immune response and predator-prey systems, and other problems
in mathematical bi-sciences [1], (6], [13], [14]. Qualitative analysis is
now a powerful tool in the study of nonlinear phenomena in all areas in
science and technology, and it is developing very rapidly. In this paper,
we study a cubic differential system, which can be considered a gener-
alization of the predator-prey model studied recently by many authors
[11], 18], [20]. We will analyze the properties of the equilibrium points,
the stability and instability, the existence and non-existence of limit cy-
cles, the uniqueness conditions and the relative positions of the limit
cycles. Since the paper of May [14], finding the conditions that there is
one and only one limit cycle in a predator-prey system has been consid-
ered a primary problem in mathematical ecology. In many articles, the
conditions presented are just sufficient [20], but we are going to show
a condition that is both sufficient and necessary for the uniqueness of
the limit cycle in the system. Our work is definitely useful for a further
study in nonlinear oscillations.

2. The cubic system and its equilibrium points

We consider the system

d
(2.1) d—f = bz + byz? — byz® — byxy
dy

% = "t (az — By)y,
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where b1 is nonnegative, bs, by, ¢, @, 3 are positive, and the sign of by is
undetermined.

System (2.1) can be considered a special case of the following model
for predator-prey interaction:

(2.2) % = f(z) —9(z,y)
Y = uele)y) - o)

where,  and y represent densities of prey and predator, respectively.
The functions f, g,u, and v represent the rates of prey reproduction,
prey death due to predation, predator reproduction, and predator death,
respectively. Gilpin (see Kuno [11}, for instance) used a function of the
form f(z) = ax — bz? + cz3 in his predator-prey model, which can be
describe both over- and under-crowding effects in the prey population.
And many Chinese authors ([18, 20]) have used some other forms for
f(z) and other functions of (2.2).

By the variable transform: = = £, y = %37, dt = %dT, and then
replace Z, ¥, T with z,y,t, system (2.1) is transferred to

d
(2.3) B_tag = z (a1 +azr — asz?) — kzy

dy

-~ = -1 —
where a; = ch is nonnegative, a3 = %329 and k = %2- are positive, and
as = %3. ‘

It is easy to see that the system has six equilibrium points: O(0,0),
A(.’L‘l,O), B(x2,0)7 0(07 _1)7 D(CE3,£C3 - 1)7 and E(.’L‘4,.’B4 - 1)) where

as F \/a3 + 4aiag

12 = >
2a3
i _ (ag — k) F \/(az — k)2 +4(a1 + k)as
34 2a3 '
Let
(2.4) A = (ag — k)% + 4(ay + k)as.
Then we have
as — k + \/Z
Ty= —— .
20,3

A simple calculation tells that O(0,0) is a saddle, C(0, —1) an unstable
node, and A(z1,0) stable node; B(x2,0) is a saddle if a; + ag > a3, and
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stable node if a1 + ap < a3. D(z3,z3 — 1) is always a saddle because
the corresponding characteristic polynomial has two eigenvalues with
different signs.

For E(z4,x24 — 1), if a1 + ag = a3, then 4 — 1 = 0, and at that time
E(z4,24 — 1) = (1,0) is a stable node. If a; + a2 < a3, 4 — 1 < 0 and
E(z4,24 — 1) is a saddle.

Now suppose that a; + a2 > a3. Then E(z4,z4 — 1) is in the interior
of the first quadrant. In this case, let

(2.5) p=(—1—az+2k)xs + (1 — 2a; — 2k).

Ifas < (2k—-1)+ 1——%_—2’“, (or p > 0), FE is an unstable node or focus;
if p < 0, FE is a stable node or focus. When p = 0, E is a center of the
corresponding linear system, but still a focus of the nonlinear system
(2.3). (Note that the condition a; + a2 > a3 implies z4 < z3).

Let @ = {(z,y)|lz > 0,y > 0}, and QFt = {(z,y)|z > 0,y > 0}.
Regarding the boundedness of the solutions, we have

THEOREM 2.1. All the solutions of system (2.3) are bounded fort > 0.

Proof. Since both x and y axes are boundaries of system (2.3), any
trajectory of (2.3) starting at (z(0),y(0)) € QF will be remained in Q7.
Now suppose there exists ¢; > 0 such that z(t1) = x2, by (2.3)

dzr _ dz

2.6 — ==
(26) dt |, dt

= —kxoy < 0.

=T

That is any trajectory attached x = xo will cross the line z = x5 from
the right to the left. Therefore, for any z(0) < z2, 2(t) < 22 when t > 0.
Suppose z(0) > x2. Since z; is the only positive root of the equation
a1 + aax — azz? = 0 for any T > z9, a1 + aoT — agT? < 0, hence

dx

(2.7) %

< 0.
z=T
Therefore, for all t > 0, z(t) < max{z(0), z2}. The proof that z(t) is
bounded is completed.
The boundedness of y(t) can be shown by the phase portrait analysis
on the region D bounded by x and y axes and the lines [; and I5 defined
as follows:

Lh @ z4+y—e=0,
la : z=mn, where 7 is a constant, n > max{z(0), z2}.
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It is easy to see that, because z is bounded,
dly dr dy
(2.8) T - @ + T
= a1 +agx — azz? — kzy —y + zy — 3>
= (a1+Dz+(a1—2+ k)CCZ — azz?
+(3z — kz — 1)e — €
< 0 for sufficiently large e.
Therefore, the region D is invariant under system (2.3), and y(t) is
also bounded for £ > 0. The proof of Theorem 2.1 is completed. O

Regarding the stability, we have

THEOREM 2.2. When a1 + a2 < a3, the equilibrium B(z2,0) is global
asymptotically stable.

Proof. We first point it out that there is no equilibrium point in Q+
when aj; + as < as . By the proof of Theorem 2.1, all the trajectories
for t > 0 are bounded, and their w limit sets may only be singular
points, closes orbits or singular closed orbits. Since both the x and y
axes are trajectories of (2.3), and there is no other equilibrium in €,
all the trajectories in §2 must approach to B(z2,0). This completes the
proof of Theorem 2.2. O

3. Existence and uniqueness of limit cycles

Our discussion is in 2 because this is the only place where the limit
cycles may exist in system (2.3). We first take care of the case when
there is no limit cycles in (2.3).

THEOREM 3.1. If a; +ag > a3 and k < 1, system (2.3) has no limit
cycles.

Proof. Construct the Dulac function §(z,y) = £ 2y~ ! and let
P(z,y) = z (a1 + a2z — a33”) — kay, Q(z,y) =y(-1+z—y).

Then, we have

il Wi - -1

oz T By a1x” %y azy " + (k- 1)z
Since our discussion is in Qt, if £ < 1, div(6P,6Q) < 0, and in any

sub-region of QF, div(dP, Q) ;é 0. By the Dulac theorem [3], system
(2.3) does not exist limit cycles in Q% d

(3.9) div(6P,6Q) =
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Before we prove the next theorem, we need to introduce the following
lemma.

LeEMMA 3.2. (Cherkas and Zhilevich [2]) If all the functions in the
generalized Linéard system

(3.10) S = k) - A)
dy
a 9(z)

are continuously differentiable and the following assumptions are satis-
fied:

(A1) zg(z) > 0, for  # 0; yh(y) > 0 for y # 0; A(0) =0, A’(0) < 0.

(A2) h(y) is non-decreasing and the curve h(y) + A(z) = 0 is defined
for all z € (—00, ).

(A3) there exists an interval (z, z) with 2} < 0 < z%, such that there
is no limit cycle for z < zy, and = > ), and %2 is non-decreasing for
z in (24, 0) and (0, z5).

Then system (3.10) has at most one limit cycle, and if it exists it is
stable.

REMARK. The assumption (A1) in Lemma 3.2 can be reduced to

(AY) zg(z) > 0, for x # 0, z € (2}, 5); yh(y) > 0 for y # 0; A(0) =
0, A'(0) < 0, where (z},z%) is as defined in the assumption (A3).

We may also use some other theorems to prove our results (see [8, 9],
for example).

Now we are in a position to prove the following uniqueness theorem
of limit cycle in system (2.3).

THEOREM 3.3. When a1 + ag > a3 and k > 1, the necessary and
sufficient condition for there exists one and only one limit cycle in system
(2.3) isp > 0.

- Proof. The existence of limit cycle follows from the proof of Theorem
2.1. As to the uniqueness, we make a change of variables: x = u + x4,
y = v + Y4, where yg = 4 — 1. Then we have

(3.11) % = (u+z4)(a1 + aa(u+ z4) — a3(u + z4)%)
- —k(u+z4)(v +ya)
dv

il (v + ya)(u —v).
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We use another change of variables:

v o= :czl/ky4ez(u+x4)1/k—y4
o= k(u+mzs) Tt

Then system (3.11) is transferred to the generalized Liénard system

du —1/k azu® — (ag — 2a3z4)u — kys
(12) B _ gy o
—1/k
—Ty Ya,
dz _ asu® + (k — ag + 2a3z4)u
dt k2(u + zq) * .
Let
hz) = 277wl - 1),
2
azu” — (ap — 2a3z)u —kys | 1k
3.13 A
(3.13) (u) PR +x4 " Ys,

a3u2 + (k — ag + 2a3z4)u

k2(u + z4) F

We want to show that the assumptions of Lemma 3.2 are satisfied.
Actually, for the assumptions (Al) to (A3), we just need to show they
are valid in the interval u € (—x4, 22 — z4) since there is no limit cycle
when z < 0 (or u < z4) and z > z2 (or u > z2 — z4). By (2.4), for

u # 0,

azu + VA2
ug(u) = (3—_2___'_—_1_ >0
k2(u+ z4)*
since
a3u+\/Z = a3(m—z4)+\/—A_
> VA —aszy4 (since z > 0)
(3.14) - VA_ #
_ VA —ay+k
= —

> 0,
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and
zh(z) = .:vgl/kyz;z(ez —1) for z #0,
R (z 0,
A(0) 0.

\

Notice that

Hy) = az(2k — D)(u+ x4)? + az(1 — k) (u + 24) + a1
(3.15) A'(u) k2(u+m4)kikl )

Then by (2.5),
a3(2k — 1)z2 + ay(1 — k)zs + a1
= 2k-1)((k-Dzs—ar—k+1-p)+ax(l—k)rs+a;
= (1-k)((1+az—2k)zs+2a1)+ (1 -2k} (k+p—1)
(3.16) = (1—k)(1—2k—p)+ (1—2k)(k—1)+ (1 — 2k)p
= —(1-kp+(1-2k)p
—kp
< 0, sincep>0.

Thus, A’(0) < 0.
It is also easy to know that g(u) can be written as
az(u + 1‘4)2 + (k —a2)(u+ z4) — (a1 + k)
(3.17) g(u) = ) .
k2(u+ x4) ®
Let w = u + 4. Then by (3.15) and (3.17), we have

Aw)  a3(2k — Dw?+ax(1 — k)w+ ax

(3.18) 9(u) agw’+ (k—a2)w — (a1 + k)
Thus |

A’(u) ! _ ¢(w)
(3.19) ( 9(w) ) "~ (azw? + (k — a2)w — (a1 + k))?’
where
(3.20)

¢>(w) = agk(2k—a2—1)w2+2a3k(1—-2a1—2k)w—(al—a1a2+a2)k+a2k2.
When k£ > 1, p > 0, by (2.5),

P+ (2k +2a1 — 1) S
T4

2k—a2-—1= 0.
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Therefore, ¢(w) reaches its minimum at w = w, where

L ask(2k + 2a1 — 1)2
¢(w) - 1+ as — 2k

Notice that, by (2.5),

- (a1 ~ayag + az)k' + a2k2.

p= —a3$i+(k—1)x4—a1 —k+1.
Thus it can be reached that

(321)  $(w) = kp(k —op+ /(a2 - 216)2 + dag(as + k)
a3(2k + 2a; — 1)
+ % —ay —1 )>0.

Thus, we have

(5) >

Therefore, the assumptions of Lemma 3.2 are satisfied, and system (2.3)
only has one limit cycle, which is stable.

On the other hand, if p < 0 system (2.3) has no limit cycle or more
than one limit cycles. The condition is also necessary. U

4. Relative position of the limit cycles

In order to estimate the relative position of the limit cycles, we first
prove the following lemma.

LEMMA 4.1. All the solutions of the auxiliary system

dz
(4.22) o = x(a1 + agzyg — agxi — ky)
dy
ey -1 -
p y(=1+z~yq)

are periodic.

Proof. Let (zo,v0) # (x4,y4), (0 < zo < z2,% > 0). Then the
trajectory T" of (4.22) starting at (zo, yo) satisfies

Yy — 2 _ L z _1 —
(4.23) / 01+ d2%e T AsT3 N g, / kil T Y
%0 Y o z
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Let T' = (z(t),y(t)). Suppose I' is not a closed orbit. We can find two
points: (z(t1),y(t1)), (@(t2), y(t2)), t1 < ta such that z(t1) = z(tz) = za,
y(t1) < y(t2) < ys. Then

/y(tz) a1 + a4 — ag.’):i —ky dy
Y

0 )

y(t1) _ 2 _k
(4.24) = / Gt 9T~ 08T = WY g,

Yo y

v() g; + agzy — azzl — k

+/ 140274 — 0824 — Ry,
y(t1) Y

Since when y < y4,

(4.25) a1 + asr — a3z® — ky > 0,
we have
vt2) g + agzq — a3zl — k
(4.26) / 17 a2%4 — A3%4 — BY 4,
) Y '
y(t1) —aax? —k
S / a1 + axx4 — a3x] ydy.
Yo Y
However,
za _q _ y(t1) _ 2 _
(4.27) / it . Y / G+ apZa —aaT; — Ky
zo z %o Y
. /y(tz) a1 + agzy — azzi — kydy _ /m4 14z -1y .
Yo Y zo z
The contradiction completes the proof of Lemma 4.1. O

THEOREM 4.2. Let Z = min{z|a; +asx —azz? = a1 +azzs—azr3, = >
x4} and define

(4.28) A= {(m,y)|x4 <z <ZT,ys <y<ar+axs— agmi} .
If for x < x4,
(4.29) (a1 + a9z — agz® — k'y) (=14 z—1y4)

> (a1+aozs — a3z3 — ky) (-1+z—y)

is satisfied, then the region A is inside of all the limit cycles of system
(2.3).
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Ya

o
FIGURE 1. The bigger the r(P), the smaller the r(o(P))

Proof. Suppose L is a limit cycle of (2.3) surrounding (x4, y4). By the
phase portrait analysis, L intersects the prey isocline a; + asx — azz? —
ky = 0 exactly at two points, denoted as Py(xo, yo) and Py (z1,y1),where
yo < y1. Consider the solution of system (4.22) with the initial condition
z(0) = zp,y(0) = yo. Lemma 4.1 implies that the solutions of the
system are periodic. Furthermore, each orbit has two intersection points
with the predator isocline —1 + 2 —y = 0, denoted as Py(zg,yo) and
0(Py) = Pro(Z50, Yo0), where the o satisfies

(4.30) O’(Pgo) = O'(O’(Po)) = Po.

Let r(P) be the distance from point P(z,y) to (1,0) along with the
predator isocline. It is easy to know that the bigger the r(P), the smaller
the r(o(P)).

By the definition of z, if (Z,y.) is inside L, so is A. Suppose (Z, y.)
is not inside L. Consider two vectors in the space:

(4.31) , = (.’E (al—f—agx—ag:cz—ky),y(—1+z—y),0),

Vo = (z(a1+azws — a3zl —ky),y(-1+ 2z —y4),0)
and their vector product:
(432) VixVa = (0,0,z (a1 + azz — asz® — ky) y (=1 +z — y4)

-z (a1 + agzy4 — azzry — ky) y(-1+z— y)) .
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Since for z4 < ¢ < Z, by the definition of 7,
(4.33) a1 + asx — asx® > a1 + asx4 — a3x421
and when y > yq4, for (z,y) € A
—“l+zxz—y42-14+zxz—9y4>0
Thus, forxy <z < Z
(4.34) z (a1 + agz — azz? — ky)y(—1+a — ys)
-z (a1 + asTy — a3x421 — ky) y(=1+z—-y)>0.

Then by (4.29), for 0 < z < Z, (4.34) always holds.

Therefore, in the region {(z,y)|0 < z < Z,0 < y} the flow of system
(2.3) is always directed outwards with respect to the flow of (4.22). In
other words, when 24 < z < Z, the trajectory L must be outside the
trajectory IV, IV is shown as the curve PyP,q in Figure 1. That is,

(4.35) T'(Pl) > T‘(Pgo).

Similarly, for 0 < & < x4, consider two trajectories starting at P;: L
and I'”, T is shown as the curve P P,, in Figure 1, we have,

(4.36) r(Py) < r(o(P1)) = r(Py,).
Since r(Py) > r(Pyp), we have
(4.37) r(o(P1)) < r(o(Fro)) = r(Fo)-

This is a contradiction that completes the proof of Theorem 4.2. O

THEOREM 4.3. Let € be defined as in (2.8). Then, all the limit cycles
of system (2.3) are inside the region B,where B = B, U By,
(4.38) Br = {(2,y)|0 <2 < 24,0 <y < —zg + €},
Bi={(z,y)lza <z <22,0<y <~z +¢}

Proof. Define vectors V and T as the following:
_ dr dy
V = [—,=,0
(dt’ dt’ )

(4.39) T = (t1,t,t3)
_ (-1,0,0,) f0< z < 24,y = —z4 + €
o (-1,1,0,)ifz4 <z <2,y =—T +e.

- dy dz
xV = (0,0,— (ZE +t252>),

Since

M

(4.40)
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if we can prove, for 0 < z < x4 and % + tz‘fi—f <0, B is invariant under
(2.3). By (4.39), for 0 < z < z4 and ¢ =0,

dy dz

(4.41) E—i—tza? =(—z4+e€)(-14+z+24—¢€) <0
Forzy <z <zx9,to=1,and y = —x +¢,
d d
E% + d—:: y(=1+2z —y)+z(a1 + asx — a3$2 — kY)ly=—a-+e

< 0 (for same € as in 2.8).
Thus we have proved that B contains all the limit cycles of system
(2.3). The proof of Theorem 4.3 is completed. O

Combine the above two theorems, we have the relative position of the
limit cycles of system (2.3):

THEOREM 4.4. If system (2.3) has any limit cycle, and if (4.29) holds,
then the limit cycle must be inside the region B\ A, with A and B as
defined in Theorems 4.2 and 4.3.

5. Applications to the predator-prey systems

We use an example to illustrate our theorems. Letting a1 = 0 in
system (2.3), we have

dx

(5.42) il z (a2a: — a3x2) — kxy
d
d—z = y(-l+z—-y)

which was studied by [18, 20] recently. It is easy to see that (z*,y*),
where

. _ (a2 —k)+ (a2 — k)% + dkas
a 2a3

x
yto= ¥ -1
is the only equilibrium point in Q. Let
p=(—1—ag+2k)z" + (1 — 2k).
By Theorems 2.1, 2.2, 3.1, and 3.3, we have
THEOREM A. All the solutions of system (5.42) are bounded fort > 0.

THEOREM B. If ay < a3, the equilibrium (ay/a3,0) of system (5.42)
is global asymptotically stable.
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THEOREM C. Ifay > a3 and k < 1, system (5.42) has no limit cycles.

THEOREM D. When az > a3 and k > 1, the necessary and sufficient
condition for there to exist one and only one limit cycle in system (5.42)
isp>0.

Obviously, these theorems are much easier to derive than the ones in
[18, 20], and the conditions for the uniqueness of limit cycle are simpler
than the ones in {18, 20].

Moreover, there are no any results reported in the literature regarding
the relative position of limit cycles of system (5.42), but they can be
easily derived as special cases in our Theorems 4.2-4.4.
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