Hydroxylation of Indole by PikC Cytochrome P450 from Streptomyces venezuelae and Engineering Its Catalytic Activity by Site-Directed Mutagenesis

  • Lee Sang-Kil (School of Chemical and Biological Engineering, Seoul National University) ;
  • Park Je-Won (Division of Nano Sciences and Department of Chemistry, Ewha Womans University) ;
  • Park Sung-Ryeol (Division of Nano Sciences and Department of Chemistry, Ewha Womans University) ;
  • Ahn Jong-Seog (Laboratory of Cellular Signaling Modulator, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choi Cha-Yong (School of Chemical and Biological Engineering, Seoul National University) ;
  • Yoon Yeo-Joon (Division of Nano Sciences and Department of Chemistry, Ewha Womans University)
  • Published : 2006.06.01

Abstract

The cytochrome P450 monooxygenase from the pikromycin biosynthetic gene cluster in Streptomyces venezuelae, known as PikC, was observed to hydroxylate the unnatural substrate indole to indigo. Furthermore, the site-directed mutagenesis of PikC monooxygenase led to the mutant enzyme F171Q, in which Phe171 was altered to Gln, with enhanced activity for the hydroxylation of indole. From enzyme kinetic studies, F171Q showed an approximately five-fold higher catalytic efficiency compared with the wild-type PikC. Therefore, these results demonstrate the promising application of P450s originating from Streptomyces, normally involved in polyketide biosynthesis, to generate a diverse array of other industrially useful compounds.

Keywords

References

  1. Betlach, M. C., J. T. Kealey, M. C. Betlach, G. W. Ashley, and R. McDaniel. 1998. Characterization of the macrolide P-450 hydroxylase from Streptomyces venezuelae which converts narbomycin to picromycin. Biochemistry 37: 14937-14942 https://doi.org/10.1021/bi981699c
  2. Bhushan, B., S. K. Samanta, and R. K. Jain. 2000. Indigo production by naphthalene-degrading bacteria. Lett. Appl. Microbiol. 31: 5-9 https://doi.org/10.1046/j.1472-765x.2000.00754.x
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. DeMoss, R. D. and K. Moser. 1969. Tryptophanase in diverse bacterial species. J. Bacteriol. 98: 167-171
  5. Eaton, R. W. and P. J. Chapman. 1995. Formation of indigo and related compounds from indolecarboxylic acids by aromatic acid-degrading bacteria: Chromogenic reactions for cloning genes encoding dioxygenases that act on aromatic acids. J. Bacteriol. 177: 6983-6988 https://doi.org/10.1128/jb.177.23.6983-6988.1995
  6. Gillam, E. M. J., L. M. Notley, H. Cai, J. J. DeVoss, and F. P. Guengerich. 2000. Oxidation of indole by cytochrome P450 enzymes. Biochemistry 39: 13817-13824 https://doi.org/10.1021/bi001229u
  7. Hoessel, R., S. Leclerc, J. A. Endicott, M. E. M. Nobel, A. Lawrie, P. Tunnah, M. Leost, E. Damiens, D. Marie, D. Marko, E. Niederberger, W. Tang, G. Eisenbrand, and L. Meijer. 1999. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat. Cell Biol. 1: 60-67 https://doi.org/10.1038/9035
  8. Hong, J. S. J., S. H. Park, C. Y. Choi, J. K. Sohng, and Y. J. Yoon. 2004. New olivosyl derivatives of methymycin/ pikromycin from an engineered strain of Streptomyces venezuelae. FEMS Microbiol. Lett. 238: 391-399
  9. Hong, J. S. J., W. S. Kim, S. K. Lee, H. S. Koh, H. S. Park, S. J. Park, Y. S. Kim, and Y. J. Yoon. 2005. The role of a second protein (DesVIII) in glycosylation for the biosynthesis of hybrid macrolide antibiotics in Streptomyces venezuelae. J. Microbiol. Biotechnol. 15: 640-645
  10. Koehler, C. S. W. 1999. Synthetic dyes and the German chemical industry. Today's Chemist Work 8: 85-91
  11. Lee, S. K., D. B. Basnet, J. S. J. Hong, W. S. Jung, C. Y. Choi, H. C. Lee, J. K. Sohng, K. G. Ryu, D. J. Kim, J. S. Ahn, B. S. Kim, H. C. Oh, D. H. Sherman, and Y. J. Yoon. 2005. Structural diversification of macrolactones by substrate-flexible cytochrome P450 monooxygenases. Adv. Synth. Catal. 347: 1369-1378 https://doi.org/10.1002/adsc.200404354
  12. Lee, S. K., C. Y. Choi, J. S. Ahn, J. Y. Cho, C. S. Park, and Y. J. Yoon. 2004. Identification of a cytochrome P450 hydroxylase gene involved in rifamycin biosynthesis by Amycolatopsis mediterranei S699. J. Microbiol. Biotechnol. 14: 356-362
  13. Li, Q. S., U. Schwaneberg, P. Fischer, and R. D. Schmid. 2000. Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst. Chem. Eur. J. 6: 1531-1536 https://doi.org/10.1002/(SICI)1521-3765(20000502)6:9<1531::AID-CHEM1531>3.3.CO;2-4
  14. Maugard, T., E. Enaud, P. Choisy, and M. D. Legoy. 2001. Identification of an indigo precursor from leaves of Isatis tinctoria (Woad). Phytochemistry 58: 897-904 https://doi.org/10.1016/S0031-9422(01)00335-1
  15. Narhi, L. O. and A. J. Fulco. 1986. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol. Chem. 261: 7160-7169
  16. Narhi, L. O., L. P. Wen, and A. J. Fulco. 1988. Characterization of the protein expressed in Escherichia coli by a recombinant plasmid containing the Bacillus megaterium cytochrome P-450 BM-3 gene. Mol. Cell. Biochem. 79: 63-71 https://doi.org/10.1007/BF00229399
  17. O'Connor, K. E., A. D. Dobson, and S. Hartmans. 1997. Indigo formation by microorganisms expressing styrene monooxygenase activity. Appl. Environ. Microbiol. 63: 4287-4291
  18. Ramachandra, M., R. Seetharam, M. H. Emptage, and F. S. Sariaslani. 1991. Purification and characterization of a soybean flour-inducible ferredoxin reductase of Streptomyces griseus. J. Bacteriol. 173: 7106-7112 https://doi.org/10.1128/jb.173.22.7106-7112.1991
  19. Rix, U., C. Fischer, L. L. Remsing, and J. Rohr. 2002. Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat. Prod. Rep. 19: 542-580 https://doi.org/10.1039/b103920m
  20. Sambrook, J., E. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Mannual. 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
  21. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  22. Xue, Y. and D. H. Sherman. 2001. Biosynthesis and combinatorial biosynthesis of pikromycin-related macrolides in Streptomyces venezuelae. Metab. Eng. 3: 15-26 https://doi.org/10.1006/mben.2000.0167
  23. Xue, Y., D. Wilson, L. Zhao, H.-W. Liu, and D. H. Sherman. 1998. Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Chem. Biol. 5: 661-667 https://doi.org/10.1016/S1074-5521(98)90293-9
  24. Yoon, Y. J., B. J. Beck, B. S. Kim, H. Y. Kang, K. A. Reynolds, and D. H. Sherman. 2002. Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae. Chem. Biol. 9: 203-214 https://doi.org/10.1016/S1074-5521(02)00095-9
  25. Zhang, Q. and D. H. Sherman. 2001. Isolation and structure determination of novamethymycin, a new bioactive metabolite of the methymycin biosynthetic pathway in Streptomyces venezuelae. J. Nat. Prod. 64: 1447-1450 https://doi.org/10.1021/np010146r