Effects of Intermediate Metabolites on Phenanthrene Biodegradation

  • Cho Hwa-Young (Department of Chemical Engineering, School and Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Woo Seung-Han (Department of Chemical Engineering, Hanbat National University) ;
  • Park Jong-Moon (Department of Chemical Engineering, School and Environmental Science and Engineering, Pohang University of Science and Technology)
  • Published : 2006.06.01

Abstract

Stimulatory effects of three different intermediate metabolites (1-hydroxy-2-naphthoate, salicylate, and catechol) as potential inducers on phenanthrene degradation were investigated using two different bacteria (Pseudomonas putida ATCC 17484 and Burkholderia cepacia PB12). The relative induction capacity was high in the sequence of 1-hydroxy-2-naphthoate, salicylate, and catechol in both strains. The highest of up to 12 times increase of the induction was obtained by the addition of 1-hydroxy-2-naphthoate in the strain PB12, compared with the control where no exogenous inducer was added. The induction capacity of the potential inducers was closely related with the number of oxygenations required per electron equivalents in one mole of the inducer.

Keywords

References

  1. Baek, K. H., H. S. Kim, H. H. Moon, I. S. Lee, H. M. Oh, and B. D. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H17-1. J. Microbiol. Biotechnol. 14: 901-905
  2. Carmichael, L. M. and F. K. Pfaender. 1997. The effect of inorganic and organic supplements on the microbial-degradation of phenanthrene and pyrene in soils. Biodegradation 8: 1-13 https://doi.org/10.1023/A:1008258720649
  3. Cerniglia, C. E. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3: 351-368 https://doi.org/10.1007/BF00129093
  4. Chen, S. H. and M. D. Aitken. 1999. Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccarophila P15. Environ. Sci. Technol. 33: 435-439 https://doi.org/10.1021/es9805730
  5. Guerin, W. F. and S. Boyd. 1995. Maintenance and induction of naphthalene degradation activity in Pseudomonas putida and an Alcaligenes sp. under different culture conditions. Appl. Environ. Microbiol. 61: 4061-4068
  6. Juhasz, A. L. and R. Naidu. 2000. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. Int. Biodeter. Biodegrad. 45: 57-88 https://doi.org/10.1016/S0964-8305(00)00052-4
  7. Keith, L. H. and W. A. Telliard. 1979. Priority pollutants: I. A perspective view. Environ. Sci. Technol. 13: 416-423 https://doi.org/10.1021/es60152a601
  8. Kim, J. D., S. H. Shim, and C. G. Lee. 2005. Degradation of phenanthrene by bacterial strains isolated from soil in oil refinery fields in Korea. J. Microbiol. Biotechnol. 15: 337-345
  9. Kiyohara, H., S. Torigoe, N. Kaida, T. Asaki, T. Iida, H. Hayashi, and N. Takizawa. 1994. Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J. Bacteriol. 176: 2439-2443 https://doi.org/10.1128/jb.176.8.2439-2443.1994
  10. Lee, D. S., M. W. Lee, S. H. Woo, and J. M. Park. 2005. Effects of addition of salicylate and glucose on biodegradation of phenanthrene. J. Microbiol. Biotechnol. 15: 859-865
  11. Mahaffey, W. R., D. T. Gibson, and C. E. Cerniglia. 1988. Bacterial oxidation of chemical carcinogens: Formation of polycyclic aromatics acids from benz[a]anthracene. Appl. Environ. Microbiol. 54: 2415-2423
  12. Mihelcic, J. R. and R. G. Luthy. 1993. Bioavailability of sorbed and separate phase chemicals. Biodegradation 4: 141-153 https://doi.org/10.1007/BF00695116
  13. Ogunseitan, O. A. and B. H. Olson. 1993. Effect of 2-hydroxybenzoate on the rate of naphthalene mineralization in soil. Appl. Microbiol. Biotechnol. 38: 799-807 https://doi.org/10.1007/BF00167148
  14. Rittmann, B. E., B. F. Smets, and D. A. Stahl. 1990. The role of genes in biological processes: Part 1. Environ. Sci. Technol. 24: 23-29 https://doi.org/10.1021/es00071a002
  15. Samanta, S. K., B. Bhushan, and R. K. Jain. 2001. Efficiency of naphthalene and salicylate degradation by a recombinant Pseudomonas putida mutant strain defective in glucose metabolism. Appl. Microbiol. Biotechnol. 55: 627-631 https://doi.org/10.1007/s002530000553
  16. Tian, L., P. Ma, and J. J. Zhong. 2003. Impact of the presence of salicylate or glucose on enzymatic activity and phenanthrene degradation by Pseudomonas mendocina. Process Biochem. 38: 1125-1132 https://doi.org/10.1016/S0032-9592(02)00245-5
  17. Woo, S. H. and B. E. Rittmann. 2000. Microbial energetics and stoichiometry for biodegradation of aromatic compounds involving oxygenation reactions. Biodegradation 11: 213-227 https://doi.org/10.1023/A:1011162830401
  18. Woo, S. H., J. M. Park, and B. E. Rittmann. 2001. Evaluation of the interaction between biodegradation and sorption of phenanthrene in soil-slurry systems. Biotechnol. Bioeng. 73: 12-24 https://doi.org/10.1002/1097-0290(20010405)73:1<12::AID-BIT1032>3.0.CO;2-W
  19. Woo, S. H., M. W. Lee, and J. M. Park. 2004. Biodegradation of phenanthrene in soil-slurry systems with different mass transfer regime and soil content. J. Biotechnol. 130: 235-250
  20. Woo, S. H. and J. M. Park. 2004. Biodegradation of aromatic compounds from soil by drum bioreactor system. J. Microbiol. Biotechnol. 14: 435-441