Content and Availability of Micronutrients in Manure-based Composts

퇴비의 미량원소 함량과 작물에 대한 유효도

  • Chung, Jong-Bae (Division of Life and Environmental Sciences, Daegu University) ;
  • Choi, Hee-Youl (Division of Life and Environmental Sciences, Daegu University)
  • 정종배 (대구대학교 생명환경학부) ;
  • 최희열 (대구대학교 생명환경학부)
  • Received : 2006.08.04
  • Accepted : 2006.08.18
  • Published : 2006.08.28

Abstract

The objective of this study was to evaluate the effects of the application of compost on the availability of micronutrients in lettuce. Micronutrient contents of manure-based composts containing various other source materials were investigated. Total and extractable contents of micronutrients in the composts were analysed. Pots containing soil of relatively low micronutrient levels were treated with 1,000 and $2,000kg\;10a^{-1}$ of compost and used to grow lettuce plants under greenhouse conditions. Fresh and dry weights of lettuce and micronutrient uptake were determined after harvest. Manure-based composts of various other source materials contained very different amounts of total and extractable micronutrients. Total contents of B, Cu, Fe, Mn, Mo and Zn were in the range of 26-42, 27-160, 4,300-9,500, 290-790, 0-0.5 and $140-420mg\;kg^{-1}$, respectively. The contents of 0.1 N HCl extractable B, Cu, Fe, Mn and Zn were 23-32, 1.3-2.6, <1, 7-32 and 0.5-5% of total content, respectively. Contents of micronutrients extractable in DTPA solution were generally higher than those extractable in 0.1 N HCl. It was found that the fresh and dry matter productions of the plants were significantly higher in the compost treatment of $2,000kg\;10a^{-1}$. Lettuce grown in soil treated 1,000 and $2,000kg\;10a^{-1}$ of manure-based compost contained higher levels of B, Cu, Mo and Zn than lettuce grown without compost application. However, contents of Fe and Mn in lettuce were relatively lower in the compost treatments. In the compost treatments the proportions of micronutrients in soil and plant were all in the optimum ranges and below the toxicity levels. The results obtained allow us to establish that commercial composts could be used as soil amendment for plastic film house crop production with sufficient supply of micronutrients.

가축분과 톱밥을 주원료로 하고 기타 농산부산물과 무기 자재로 제조된 퇴비의 미량원소 함량을 조사하고 이러한 퇴비의 처리가 토양의 미량원소 함량과 작물의 미량원소 흡수 이용에 미치는 영향을 상추 재배를 통하여 조사하였다. 시중에 유통되고 있는 5종의 퇴비를 구입하여 실험에 사용하였으며, 미량원소는 총 함량과 가용성 함량으로 분석하였다. 미량원소 함량이 낮은 토양에 퇴비 1종을 1,000 및 $2,000kg\;10a^{-1}$ 수준으로 처리하고 포트 시험으로 온실에서 상추를 재배하였으며, 생육과 식물체중의 미량원소 함량을 조사하였다. 퇴비중의 미량원소 함량은 원료물질이 다른 만큼 퇴비의 종류별로 총 함량과 가용성 함량 모두 다양하였다. 미량원소 총 함량은 B, Cu, Fe, Mn, Mo, Zn이 각각 26-42, 27-160, 4,300-9,500, 290-790, 0-0.5, $140-420mg\;kg^{-1}$ 범위로 나타났다. 퇴비중의 0.1 N HCl 가용성 B, Cu, Fe, Mn, Zn 은 각각 총 함량의 23-32, 1.3-2.6, <1, 7-32, 0.5-5% 수준이었으며 DTPA 가용성 함량은 0.1 N HCl 가용성 함량보다 높았다. 퇴비를 $2,000kg\;10a^{-1}$ 수준으로 처리한 경우 퇴비를 처리하지 않은 대조구에 비하여 통계적으로 유의성 있게 생육이 증가하였으며, 대조구에 비하여 퇴비 처리구 모두에서 상추 잎 중의 B, Cu, Mo, Zn 함량이 높게 나타났다. 그러나 퇴비 처리가 Fe와 Mn의 흡수는 증가시키지 못하였다. 퇴비 $2,000kg\;10a^{-1}$ 수준의 처리를 통하여 토양에 공급되는 0.1 N HCl 가용성 미량원소의 양은 상추 생육에 필요한 양보다 많았으며, 이러한 결과로부터 적절한 수준의 퇴비 시용을 통하여 작물이 필요로 하는 미량원소를 원활히 공급할 수 있을 것으로 판단된다. 따라서 퇴비 시용량이 비교적 많은 비닐하우스 농가에서 사용되고 있는 미량원소 비료의 시용 효과는 미량원소 흡수에 미치는 토양 환경이나 작물 요인을 고려하여 면밀히 검토되어야 할 것이다.

Keywords

References

  1. Berti, W. R, and L. W. lacobs. 1996. Chemistry and phytotoxicity of soil trace elements from repeated sludge application. J. Environ. Qual. 25:1025-1032 https://doi.org/10.2134/jeq1996.00472425002500050014x
  2. Chaney, R L. 1990. Public health and sludge utilization. BioCycle 30:68-73
  3. Clapp, C. E., S. A. Strak, D. E. Clay, and W. E. Larson. 1986. Sewage sludge organic matter and soil properties. In Y. Chen and Y. Avnimelech (ed.) The role of organic matter in modern agriculture. Martinus Nijinoff Publishers, Dordrecht, The Netherlands
  4. Graham, R. D., and M. J. Webb. 1991. Micronutrients and disease resistance and tolerance in plant. p. 329-370. In J. J. Mortvedt et al. (ed.) Micronutrients in agriculture. 2nd ed. SSSA book series No. 4. Madison, Wisconsin, USA
  5. Ha, H. S., M. S. Yang, H. Lee, Y. B. Lee, B. K. Sohn, and U. G. Kang. 1997. Soil chemical properties and plant mineral contents in plastic film house in southern part of Korea. J. Korean Soc. Soil Sci. Fert. 30:272-279
  6. Jones, J. B. 1991. Plant tissue analysis in micronutrients. p. 477-521. In J. J. Mortvedt (ed.) Micronutrients in agriculture. 2nd ed. SSSA book series No.4. Madison, Wisconsin, USA
  7. Jung, G. B., K. Y. Jung, G. H. Cho, B. K. Jung, and K. S. Kim. 1998. Heavy metal contents in soils and vegetables in the plastic film house. J. Kor. Soc. Soil. Sci. Fert. 30:152-160
  8. Kabata-Pendias, A., and H. Pendias. 1991. Trace elements in plants. p. 67-85. In trace elements in soil and plants. 2nd ed. CRC Press, Boca Raton, FL, USA
  9. Kuo, S. 1990. Zn buffering capacity and Zn accumulation in swiss chard for some sludge-amended soils. Plant Soil 126: 177 -186 https://doi.org/10.1007/BF00012821
  10. Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 42:421-428 https://doi.org/10.2136/sssaj1978.03615995004200030009x
  11. McGrath, S. P., and C. H. Cunliffe. 1985. A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils and sewage sludges. J. Sci. Food Agric. 36:794-798 https://doi.org/10.1002/jsfa.2740360906
  12. Moreno-Caselles, J., R. Moral, M. D. Perez-Murcia, A. Perez-Espinosa, C. Paredes, and E. Agullo. 2005. Fe, Cu, Mn, and Zn input and availability in calcareous soils amended with the solid phase pig slurry. Commun. Soil Sci. Plant Anal. 36:525-534 https://doi.org/10.1081/CSS-200043279
  13. Morgan, J. T., and H. J. Mascagni. 1991. Environmental and soil factors affecting micronutrient deficiencies and toxicities. p. 371-425. In J. J. Mortvedt (ed.) Micronutrients in agriculture. 2nd ed. SSSA book series No.4. Madison, Wisconsin, USA
  14. NIAST. 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, Suwon, Korea
  15. Ozores-Hampton, M., P. A. Stansly, and T. A. Obreza. 2005. Heavy metal accumulation in a sandy soil and in pepper fruit following long-term application of organic amendments. Compost Sci. UtiI. 13:60-64 https://doi.org/10.1080/1065657X.2005.10702218
  16. RDA. 2006. Official standards of fertilizers. Rural Development Administration, Suwon, Korea
  17. Romheld, Y., and H. Marschner. 1991. Function of micronutrients in plants. p. 297-328. In J. J. Mortvedt et al. (ed.) Micronutrients in agriculture. 2nd ed. SSSA book series No.4. Madison, Wisconsin, USA
  18. Shiralipour, A, D. B. McConnell, and W. H. Smith. 1992. Use and benefits of municipal compost: a review and assessment. Biomass Bioenerg.3:267-279 https://doi.org/10.1016/0961-9534(92)90031-K
  19. Sims, J. T., and G. V. Johnson. 1991. Micronutrient in soil. p. 427-479. In J. J. Mortvedt (ed.) Micronutrients in agriculture. 2nd ed. SSSA book series No.4. Madison, Wisconsin, USA
  20. Solan, J. J., R. H. Dowdy, and M. S. Dolan. 1998. Recovery of biosolids applied heavy metals 16 years after application. J. Environ. Qual. 27:1312-1317 https://doi.org/10.2134/jeq1998.00472425002700060007x
  21. Sukkariyah, B. F., G. Evanylo, L. Zelazny, and R. Chaney. 2005. Cadmium, copper, nickel, and zinc availability in a biosolidsamended Piedmont soil years after application. J. Environ. Qual. 34:2255-2262 https://doi.org/10.2134/jeq2004.0369
  22. Yuran, G. T., and H. C. Hamson. 1986. Effects of genotype and sludge on cadmium concentration in lettuce leaf tissue. J. Amer. Soc. Hort. Sci. 111:491-494
  23. Zubillaga, M. S., and R. S. Lavado. 2002. Heavy metal content in lettuce plants grown in biosolids compost. Compost Sci. Util. 10:363-367 https://doi.org/10.1080/1065657X.2002.10702099