• Title/Summary/Keyword: Plastic film house soil

Search Result 31, Processing Time 0.277 seconds

Chemical Characteristics of Plastic Film House Soils in Chungbuk Area (충북(忠北) 지역(地域) 시설재배(施設栽培) 토양(土壤)의 화학적(化學的) 특성(特性))

  • Kang, Bo-Koo;Jeong, In-Myeong;Kim, Jai-Joung;Hong, Soon-Dal;Min, Kyeong-Beom
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.3
    • /
    • pp.265-271
    • /
    • 1997
  • The salt accumulation, and chemical properties of 90 samples of the plastic film house soil in the area of Cheongju and Chungju were surveyed. Soil textural distribution of soil samples was 30% for sandy loam, 27% for loam and 43% for silty loam. Percentage distribution of electrical conductivity(EC) of surface soil was 23% below $2dS\;m^{-1}$, 30% for $2{\sim}4dS\;m^{-1}$, 25% for $4{\sim}6dS\;m^{-1}$ and 22% over $6dS\;m^{-1}$. Salt affected soil, which EC was higher than $4dS\;m^{-1}$, covered nearly 50% of all field surveyed. However subsoils(20~30cm) below $2dS\;m^{-1}$ was 68%. Salts in plastic film house soil was accumulated by increasing the cultivation period. After 5 years of cultivation electrical conductivity in plastic house soil was generally higher than $4.47dS\;m^{-1}$ in EC that was 2.8~5.6 times higher than that in the field soil in the outside of plastic film house. As the result of temporary removal of plastic film cover from the house during the rainy summer season, salt content in soil was decreased from $3.54{\sim}7.36dS\;m^{-1}$ to $0.71{\sim}2.92dS\;m^{-1}$ in EC due to the desalinization by runoff and percolating water. Contents of $NO_3-N$, $SO_4-S$ and Cl in plastic film house soil were 2.5. 7.0 and 3.4 times higher than those of open field respectively.

  • PDF

Density of Arbuscular mycorrhizal spore of plastic film house soil in Yeongnam area and characterestics of AMF in vitro (영남지역 시설재배지에 분포하는 Arbuscular 균근균의 포자 밀도 및 기내조건에서의 포자발아와 균사생장 특성)

  • Park, Hyang-Mee;Nam, Min-Hee;Kang, Hang-Won;Lee, Jae-Saeng;Ko, Jee-Yeon;Kang, Ui-Gum;Park, Kyeong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.203-209
    • /
    • 1999
  • This study was conducted to obtain the basic data on agricultural use of arbuscular mycorrhizal fungi(AMF) in salt accumulated plastic film house soil by evaluating the density of AMF spores in plastic film house in Yeong Nam area and surface sterility condition, germination rate of AMF spores, and hyphal growth in vitro. The density of AMF spores in plastic film house soils was highest in the site of water melon, and those of cucumber, melon, hot pepper sites were followed in order. The number of AMF was in the range of 101-207 per 100 g dry soil. With decreasing the ratio of bacteria to fungi(B/F), the population density of AMF was increased, and available $P_2O_5$ content of soil was significantly correlated to the population densities of AMF($r=0.416^*$). The surface sterility rate and spore germination of AMF isolated in plastic film house soil were more than 50% in 2% chloramin T and 2% chloramin T + antibiotic and 0.5% NaOCl treatments. The germination rate of Gigaspora margarita in the range of initial pH 5~9 of the medium was more than 56%. Hyphal growth was increased as pH of the medium increased. However the germination rate of Acaulospora spinosa was highest in the medium of pH 9, and hyphal growth in vitro was poor and not related to pH of the medium.

  • PDF

The Effect of Anaerobic Fermentation Treatment of Rice or Wheat bran on the Physical and Chemical property of Plastic Film House Soil (쌀겨와 밀기울의 토양 혐기발효 처리가 시설 재배지 토양의 물리 화학성에 미치는 영향)

  • Kim, Hong-Lim;Sohn, Bo-Kyun;Jung, Kang-Ho;Kang, Youn-Ku
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.366-371
    • /
    • 2006
  • This study was done to assess the physical and chemical properties after anaerobic fermentation treatment which use rice bran or wheat bran in plastic film house soil. The results which investigates the change of soil physical property after treatment 150 days showed a dramatic difference. The physical properties of control soil were the bulk density $1.46Mg\;m^{-3}$, hardness $2.30Kg\;cm^{-3}$, hydraulic conductivity $4.8cm\;hr^{-1}$, water stable aggregate(>0.5mm) 6.7%. Of the soil which treatment the rice bran in comparison to control soil, bulk density and hardness was diminished 12% and 58%, respectively. hydraulic conductivity and water stable aggregate(>0.5mm) were increased 4.5 and 5.2 fold, respectively. And, in the soil which treatment the wheat bran, bulk density and hardness was diminished 14% and 67%, respectively. Hydraulic conductivity and water stable aggregate(>0.5mm) were increased 6.3 and 6.5 fold, respectively. $NO_3-N$ contents of the soil which treated the rice bran or wheat bran after treatment 20 days were diminished 98% in comparison to control soil. The decrease of $NO_3-N$ contents in the soil was investigated with the fact that it is caused by with increase of the soil-microbial biomass. EC of the soil which treated the rice bran were $1.48dS\;m^{-1}$ which was diminished 58% in comparison to control soil. That of soil which treated the wheat bran was increased $3.65dS\;m^{-1}$ in the early stage because of acetic and butyric acid. But it was reduced as under $2.0dS\;m^{-1}$ after treatment 30 days. As the conclusion the anaerobic fermentation treatment with rice or wheat bran was effective to the improvement of soil physical and salt accumulation of the plastic film house soil.

Effects of Application Amount of Organic Compound Fertilizer on Lettuce Growth and Soil Chemical properties under Plastic film house (시설재배지에서 유기복합비료 시용량에 따른 상추 생육 및 토양화학성에 미치는 영향)

  • Kim, Myeong-Suk;Park, Seong-Jin;Kim, Sung-Hyun;Hwang, Hyun-Young;Shim, Jae-Hong;Lee, Yun-Hae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.3
    • /
    • pp.37-44
    • /
    • 2020
  • The Project supporting organic fertilizer started in 1999 as a national policy. In farmhouse, over application of mixed organic compound fertilizer(OC) caused salt accumulation in plastic film house soil. To replace inorganic fertilizer with OC fertilizer, this study was investigated the effect of OC application on yield and soil chemical properties for lettuce cultivation in plastic film house. The OC fertilizer was applied at 50(OC50+N50), 100(OC100), and 150(OC150) % level of the basal amount of nitrogen fertilizer in soil testing recommendation. And these were compared to NPK(nitrogen, phosphat, and potash fertilizer) and PK treatment. The yield of lettuce in OC100 was similar to that of NPK treatment. In OC 50, 100 and 150 treatments, pH had a tendency to increase than that of NPK treatment. Nitrate nitrogen(NO3-N) and electrical conductivity(EC) were similar to NPK treatment. These showed that nutrients from OC fertilizer were less likely to accumulate in soil than NPK. Also, use efficiency of nitrogen in OC100 treatment were similar to NPK treatment. These results suggest that OC application as the basal dressing at the 100% level could be best to prevent a nutrient accumulation of soil and to increase the yield and commercial quality for lettuce.

Effect of Rice Bran and Wood Charcoal on Soil Properties and Yield of Continuous Cropping of Red Pepper

  • Won, J.G.;Jang, K.S.;Hwang, J.E.;Kwon, O.H.;Jeon, S.G.;Park, S.G.;Park, K.C.;Suh, Y.J.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.218-221
    • /
    • 2011
  • To improve the soil properties of physical and microbial community rice bran and wood charcoal were applied in the continuously cultivated plastic film house soil. Soil physical properties were improved by application of rice bran and charcoal compared to chemical fertilizer application (control) by 8~14% in bulk density and 5~9% in soil porosity. Changes in the biological ratio indexes of fatty acids in the soils were detected depending on the inputted materials. Especially in application of rice bran including mixture with charcoal, much more fungi and less bacteria were detected and the ratio of fungi to bacteria was increased, suggesting the more organic carbon metabolically active in these treatments. The high ratio of aerobe to anaerobe suggested the better aerobic conditions were in the soil inputted wood charcoal. From these results, it is important and possible to select some materials for the organic pepper cultivation, which may improve the poor condition soil.

Characterization of Phosphate-solubilizing Microorganisms in Upland and Plastic Film House Soils (밭과 시설재배지 토양의 인산가용화 미생물의 특성)

  • Suh, Jang-Sun;Kwon, Jang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.348-353
    • /
    • 2008
  • With the aim to explore the possible role of phosphate-solubilizing bacteria in soil, we conducted a survey of phosphate-solubilizing microorganisms colonizing in upland and plastic film house soils. Soil EC, pH, organic matter, available phosphate, exchangeable cation such as potassium, calcium and magnesium, and total P of plastic film house soils were higher than those of upland soils. Phosphate-solubilizing bacteria population was higher in plastic film house soils than upland soils, but species of phosphate-solubilizing bacteria was more diverse in the upland soils than the plastic film house soils. There was significant positive correlation between phosphate solubilization and phosphate-solubilizing bacteria in soils. Bacillus, Cedecea, Brevibacillus, Paenibacillus, Pseudomonas, Serratia spp. were isolated from upland soils and Bacillus and Cellulomonas spp. were from plastic film house soils.

Desalinization Effect of Off-season Crop Cultivation in Long-term Oriental Melon Cultivated Plastic Film House Soils (휴경기 후작물 재배에 의한 참외 장기연작 비닐하우스 토양의 제염 효과)

  • Byeon, Il-Su;Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.253-259
    • /
    • 2015
  • BACKGROUND: During the off-season, the cultivation of Chinese cabbage and water dropwort is often used to desalinize plastic film house soils. The objective of this study was to verify the effect of double-cropping systems on the salt removal in oriental melon cultivated plastic film house soils.METHODS AND RESULTS: Electrical conductivity (EC) and soluble salt contents were measured in soils collected from plastic film houses of oriental melon cultivation before and after the off-season crop cultivation. Also the same measurements were performed in the next oriental melon season to estimate the desalinization effect of double-cropping systems. During the cultivation of Chinese cabbage under open-field condition, ECeof surface soil was reduced from 6.0 to 0.8 dS/m. Double-cropping of water dropwort in flooded soil was also efficient in removing the salts accumulated during oriental melon cultivation. In the house soils where salts were removed during the off-season crop cultivation, soil ECewas maintained below 3 dS/m during the next oriental melon cultivation season.CONCLUSION: The off-season cropping under open-field or flooded condition was effective in desalinization of plastic film house soils. Since the salt removal effect is not expected to last for several years, the double-cropping system should be introduced every season to maintain soil EC below the critical level.

A Modified Methodology of Salt Removal through Flooding and Drainage in a Plastic Film House Soil (시설재배지에서 토양 담수 및 배수에 의한 염류집적 경감 방안)

  • Oh, Sang-Eun;Son, Jung-Su;Ok, Yong-Sik;Joo, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.565-571
    • /
    • 2010
  • One of the disadvantages of flooding treatment for desalting from soils is that salts move to deep soils after flooding and at the end reaccumulate at the soil surface through capillary movements. This study was carried out to remove salts from soils in plastic film houses by a modified flooding method, drainage after flooding. The method successfully removed salts at the soil surface and salts did not move to the deep soil. Drained water containing N, P and K could be reused as fertilizer. By applying small amount of MgO, turbidity of water flooded decreased in 30 min by 95%. Struvite should be formed since the flooded water contain ammonia and phosphorous and their concentrations were decreased. This could be utilized as fertilizer which provides a slow-release source of phosphorus, magnesium and nitrogen that features low inherent water solubility.

Soil Physico-chemical Properties by Land Use of Anthropogenic Soils Dredged from River Basins

  • Park, Jun-Hong;Park, Sang-Jo;Won, Jong-Gun;Lee, Suk-Hee;Seo, Dong-Hwan;Park, So-Deuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.341-346
    • /
    • 2016
  • This study was conducted to analyze soil physico-chemical properties of agricultural land composed from the river-bed sediments. We investigated the changes of soil physico-chemical properties at 30 different sampling sites containing paddy, upland and plastic film house from 2012 to 2015. pH, exchangeable calcium and magnesium decreased gradually in paddy soils during the four years, whereas the available $P_2O_5$, exchangeable Ca, Mg and EC increased in upland and plastic film house soil. For the soil physical properties, bulk density and hardness of topsoil were $1.47g\;cm^{-3}$ and 21.5 mm and those of subsoil were $1.71g\;cm^{-3}$ and 25.7 mm in paddy soils. In upland soils, bulk density and hardness of topsoil were $1.48g\;cm^{-3}$ and 15.9 mm and those of subsoil were $1.55g\;cm^{-3}$ and 16.9 mm. In plastic film house soils, bulk density and hardness of topsoil were $1.42g\;cm^{-3}$ and 14.4 mm and those of subsoil were $1.40g\;cm^{-3}$ and 18.5 mm, respectively. The penetration hardness was higher than 3 MPa below soil depth 20 cm, and it is impossible to measure below soil depth 50 cm. As these results, in agricultural anthropogenic soils dredged from river basins, the pH, amount of organic matter and exchangeable cations decreased and soil physical properties also deteriorated with time. Therefore, it is needed to apply more organic matters and suitable amount of fertilizer and improve the soil physical properties by cultivating green manure crops, deep tillage, and reversal of deep soils.

Soil Quality Assessment Method of Paddy and Upland (논과 밭토양의 질 평가 방법)

  • Yoon, Jung-Hui;Jung, Beung-Gan;Jun, Hee-Joong;Kwak, Han-Kang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.357-364
    • /
    • 2004
  • Modern agriculture depending on chemicals such as fertilizers and pesticides gave rise to questions about long-term sustainability of agriculture in relation to degradation of soil quality. Improving soil quality is prerequisite to sustain biological productivity, maintain environmental quality, and promote plant and animal health. Assessment and monitoring of the health and quality of soil is necessary to provide opportunity to evaluate and redesign soil management system for sustainability. To develop the soil quality assessment method, we collected national data on soil properties of paddy and upland and attempted to evaluate the data in aspect of soil quality by the process of selecting a minimum data set (MDS), scoring the soil properties and calculating soil quality index (SQI) integrating the score of each soil property. This approximation indicated that soil quality index was in the order of paddy soil, upland soil and plastic film house soil.