Effect of Chitin Compost on Biological control of Fusarium wilt in Tomato Field

키틴퇴비를 이용한 토마토의 Fusarium 시들음병의 생물학적 제어

  • Jin, Rong-De (Division of Applied BioScience and Biotechnology, and Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University) ;
  • Cho, Min-Young (Division of Applied BioScience and Biotechnology, and Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Sung-Jae (Division of Applied BioScience and Biotechnology, and Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University) ;
  • Ryu, Ji-Yeon (Division of Applied BioScience and Biotechnology, and Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University) ;
  • Chae, Dong-Hyeon (Soil Love Co., Ltd.) ;
  • Kim, Yong-Woong (Division of Applied BioScience and Biotechnology, and Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Kil-Yong (Division of Applied BioScience and Biotechnology, and Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University)
  • 김영덕 (전남대학교 농업생명과학대학 응용생물공학부) ;
  • 조민영 (전남대학교 농업생명과학대학 응용생물공학부) ;
  • 김성재 (전남대학교 농업생명과학대학 응용생물공학부) ;
  • 유지연 (전남대학교 농업생명과학대학 응용생물공학부) ;
  • 채동현 ((주) 흙사랑) ;
  • 김용웅 (전남대학교 농업생명과학대학 응용생물공학부) ;
  • 김길용 (전남대학교 농업생명과학대학 응용생물공학부)
  • Received : 2006.01.16
  • Accepted : 2006.01.30
  • Published : 2006.02.28

Abstract

Biological control by chitinolytic microorganisms is being evaluated as management options for soilborne diseases. Forty kilograms of chitin compost (CTC) and control compost (CC) were amended on tomato plots ($15m{\times}0.5m$) 7 d before transplanting to evaluate enzymatic activities and the control of Fusarium wilt. Samples were taken on day 1, 3, 5, and 7, the day 1 corresponded to the 66 d after transplanting, the day on which the initial wilting symptoms occurred in plants of CC treated plots. The chitinase activity in soil of CTC was always higher compared to the control. Pathogenesis related (PR) protein (chitinase, ${\beta}$-1, 3-glucanase and peroxidase) activities in tomato roots in CC increased every day and showed marked differences compared to CTC. Wilting symptoms (96 d after transplanting) were reduced by 25% in CTC compared to the control. Protection of tomato plant may be correlated with the high levels of soil enzyme activities resulting from the chitin compost.

최근 들어서 생물학적 제어 방법의 하나로써 키틴분해 미생물을 이용한 제어 수단이 식물병제어에 일정한 효과가 있는 것으로 보고되고 있다. Fusarium 시들음병을 억제하기 위하여 40kg의 키틴퇴비를 면적이 $7.5m^2$ 인 토양에 정식 7일전 처리하였으며 토마토가 시들음병 증세를 보이기 시작하는 날(정식 후 66일)로부터 시작하여 4번에 걸쳐 시료를 채취하였다. 키틴퇴비 처리구(CTC)의 근권토양의 키틴효소와 ${\beta}$-1,3-glucan 효소 활성은 일반퇴비 처리구 (CC) 토양 보다 항상 높은 값을 나타냈다. 그러나 식물체 뿌리에서 측정된 chitinase, ${\beta}$-1,3-glucanase, peroxidase과 같은 병 관련 효소들은 CNC에서 실험기간동안 증가 추이를 보였다. 실험의 마지막 단계인 정식 후 96일째에는 CTC의 토마토는 CC 와 비교 할 때 25% 낮은 치사율을 나타냈다.

Keywords

References

  1. Alabouvette, C., B. Schippers, P. Lemanceau, and P.A.H.M. Bakker. 1998. Biological Control of Fusarium Wilts. P. 15-36. In: J.B. Greg and L.D. Kuykendall. (ed.) Plant-Microbe Interaction and Biological Control. Marcel. Dekker, Inc.
  2. Bartnicki-Garcia, S. 1968. Cell wall chemistry, morphogenesis and taxonomy of fungi. Annu. Rev. Microbiol. 22: 87108
  3. Beffa, R.S., R.M. Hofer, M. Thomas, and F. Meins. 1996. Decreased susceptibility to viral disease of $\beta$-1, 3-glucanase-deficient plants generated by antisense transformation. Plant Cell. 8: 1001-1011 https://doi.org/10.1105/tpc.8.6.1001
  4. Byrne, N.D., M. Duxbury, and N. Sharpe. 2001. The determination of chitinase activity of grapes. Biochem. Mol. Biol. Edu. 29: 144-146
  5. Carolina, F., R Rodrigo, W. Prem, and W.K. Joseph. 2001. Induced soil suppressiveness to a root-knot nematode species by a nematicide. Biol. Control 22: 103-114 https://doi.org/10.1006/bcon.2001.0961
  6. Caruso, C., G. Chilosi, C. Caporale, L. Leonardi, L. Bertini, P. Magro, and V. Buonocore. 1999. Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Sci. 140: 107-120
  7. Chance, B., and A.C. Maehly. 1955. Assay of catalases and peroxidases. Meth. Enzymol. 2: 764-775 https://doi.org/10.1016/S0076-6879(55)02300-8
  8. Chet, I. 1987. Trichodermaapplication, mode of action, and potential as a biocontrol agent of soilborne plant pathogenic fungi. P. 137160. In: Innovative Approaches to Plant Disease Control, Wiley, New York
  9. Cotxarrera, L., M.I. Trillas-Gay, C. Steinberg, and C. Alabouvette. 2002. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol. Biochem. 34: 467-476 https://doi.org/10.1016/S0038-0717(01)00205-X
  10. Emmert, E.A.B., and J. Handelsman. 1999. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett. 171: 1-9 https://doi.org/10.1111/j.1574-6968.1999.tb13405.x
  11. Gao, YJ., H.D. Shin, K.K. An, S.K. Lee, J.K. Lee, B.J. Cha, and J.S. Cha. 1998. Fusarium Wilt. , P. 349-351. In: Plant pathology, World Science Publishers, South Korea
  12. Hoffland, E., C.M.J. Pieterse, L. Bik, and J.A. Van Pelt. 1995. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol. Mol. Plant Pathol. 46: 309-320 https://doi.org/10.1006/pmpp.1995.1024
  13. Jung, W.J., K.N. An, Y.L. Jin, R.D. Park, K.T. Lim, K.Y. Kim, and T.H. Kim. 2003. Biological control of damping-off caused by Rhizoctonia solani using chitinase-producing Paenibacillus illinoisensis KJA-424. Soil Biol. Biochem. 35: 1261-1264 https://doi.org/10.1016/S0038-0717(03)00187-1
  14. Kim, Y.J., and B.K. Hwang. 1994. Differential accumulation of $\beta$-1, 3- gluconase and chitinase isoforms in pepper stems infected by compatible and incompatible isolates of Phytophthora capsici. Physiol. Mol. Plants Pathol. 45: 195-209 https://doi.org/10.1016/S0885-5765(05)80077-3
  15. Larena, I., and P. Melgarejo. 1996. Biological control of Monilinia laxa and Fusarium oxysporum f. sp. lycopersid by a lytic enzyme-producing Penicillium purpurogenum. Biol. Control 6: 361-367 https://doi.org/10.1006/bcon.1996.0046
  16. Larkin, R.P., D.L. Rlopkins, and F.N. Martin. 1996. Suppression of fusarium wilt of watermelon by nonpathogenic fusarium oxysporum and other microorganisms recovered from a disease-suppressive soil. Phytopathology. 86: 812-819 https://doi.org/10.1094/Phyto-86-812
  17. Lawrence, C.B., M.H.A.J. Joosten, and S. Tuzun. 1996. Differential induction of pathogenesis-related proteins in tomato by Alternaria solani and the association of a basic chitinase isozyme with resistance. Physiol. Mol. Plant Pathol. 48: 361-377 https://doi.org/10.1006/pmpp.1996.0029
  18. Lee, H.S., H.J. Lee, S.W. Choi, S. Her, and D.H. Oh. 1997. Purification and Characterization of antifungal chitinase from Pseudomonas sp. YHS-A2. J. Microbiol. Biotechnol. 7: 107-113
  19. Lee, H.J. 2003. Biocontrol of late blight in pepper (Capsicum annuum L.) by antagonistic Bacillus subtilis HJ927. A Master's Thesis, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
  20. Lingappa, Y, and J.L. Lockwood. 1962. Chitin media for selective isolation and culture of actinomycetes. Phytopathology.52: 317-323
  21. Melent'ev, A.I., G.E. Aktuganov, and N.F. Galimzyanova. 2001. The role of chitinase in the antifungal activity of Bacillus sp.739. Microbiology. 70: 636-641
  22. Mian, I.H., G. Godoy, R.A. Shelby, R. Rodrguez-Kbana, and G. Morgan-Jones. 1982. Chitin amendment for control of Meloidogyne arenaria in infested soil. Nematolopica 12: 71-84
  23. Nopakarn, R., P. Abhinya, Y. Shigekazu, W. Mamoru, and T. Takashi. 2002. Utilization of shrimp shellfish waste as a substrate for solid-state cultivation of Aspergillus sp. S 1-13: Evaluation of a culture based on chitinase formation which is necessary for chitin-assimilation. J. Biosci. Bioeng. 93: 550-556 https://doi.org/10.1016/S1389-1723(02)80236-5
  24. Schoffelmeer, E.A.M., L.F.M. Klis, J.H. Sietsma, and B.J.C. Cornelissen. 1999. The Cell Wall of Fusarium oxysporum. Fungal Genet. Biol. 27: 275-282 https://doi.org/10.1006/fgbi.1999.1153
  25. Strohl, W.R. 1997. Industrial antibiotics: today and the future. P. 3-47. In: Strohl WR (ed) Biotechnology of Antibiotics, Marcel Dekker Ins., New York, USA
  26. Toussaint, V., D. Valois, M. Dodier, E. Faucher, C. Dery, C. Brzezinski, L.R. Ruest, and C. Beaulieu. 1997. Characterization actinomycetes antagonistc to Phytophthora fragariae var. rubi. Phytoprotection.78:43-51 https://doi.org/10.7202/706118ar
  27. Trotta, A., G.C. Varese, E. Gnavi, A. Fusconi, S. Sampo, and G. Berta. 1996. Interaction between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomos mosseae in tomato plants. Plant Soil. 185: 199-209 https://doi.org/10.1007/BF02257525
  28. Wang, S.L., I.L. Shin, C.H. Wang, K.C. Tseng, W.T. Chang, Y.K. Twu, J.J. Ro, and C.L. Wang. 2002. Production of antifungal compounds from chitin by Bacillus subtilis. Enzyme Microb. Tech. 31: 321-328 https://doi.org/10.1016/S0141-0229(02)00130-8
  29. Wessels, J., and J. Sietsma. 1981. Fungal cell walls: a survey. In: Tanner, W., Loewus, F., (eds), Encyclopedia of Plant Physiology, New Series, Vol. 13 B, Plant Carbohydrates II, Springer-Verlag, Berlin. pp 352394
  30. Yedidia, I., N. Benhamou, Y. Kapulnik, and I. Chet. 2000. Induction and accumulation of PR protein activities during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol. Biochem. 38: 863-873 https://doi.org/10.1016/S0981-9428(00)01198-0
  31. Zheng, H.Z., R.D. Park, Y.W. Kim, H.J. Lee, W.J. Jung,, Y.C. Kim, S.H. Lee, T.H. Kim, and K.Y. Kim. 2004. Quantitative changes in PR proteins and antioxidative enzymes in response to Glomus intraradices and Phytophthora capsici in pepper (Capsicum annuum L.) plants. J. Microbiol. Biotechnol. 14: 553-562