Breakthrough Curves and Elution Patterns of Heavy Metals in Sandy Clay Loam and Clay Soils

사질식양토와 식토토양에서의 중금속의 용탈과 파쇄곡선

  • Chung, Doug-Young (Department of Bioenvironmental Chemistry, College of Agriculture and Life Science Chungnam National University) ;
  • Noh, Hyun-H. (Department of Bioenvironmental Chemistry, College of Agriculture and Life Science Chungnam National University)
  • 정덕영 (충남대학교 농업생명과학대학 생물환경화학전공) ;
  • 노현희 (충남대학교 농업생명과학대학 생물환경화학전공)
  • Received : 2005.09.05
  • Accepted : 2005.10.26
  • Published : 2006.02.28

Abstract

We investigated the mobilization of Cd, Pb, and Cr in two different soils in response to sorption capacities and competition for available sorption site while they moved under saturated water conditions. Two soil samples that were clay and sandy clay loam were collected within 20 cm from the upland surface. To do this, we used three different systems of heavy metal combinations such as single, binary, and ternary as solution phase. And then we observed the breakthrough curve (BTC) and elution as a function of pore volume by applying heavy metal solution and displacing K solution until these curves reached to maximum and minimum. The results showed that BTC and elution curves were not symmetric and it required more pore volumes with increasing species of heavy metals in solution phase, as well as longer tailings. Compared the areas over and under BTC and elution curve, relatively small amount of heavy metal was displaced by K even though there were differences in electronegativity among heavy metals. Conclusively, we assumed that heavy metals transport in soil could be influenced by soil physical nonequilibrium and chemical equilibrium in solution as far as there were more than two species of heavy metals existed.

본 실험은 포화수분상태에서 두개의 서로 다른 토양의 흡착가능장소에 대한 흡착능과 경쟁에 따른 Cd, Pb, 그리고 Cr 이온의 이동성을 조사하였다. 이 조사를 위하여 수용성상태로 단일, 이중, 삼중의 중금속 조합을 이용하였다. 두개의 토양시료는 밭토양의 지표면으로부터 20 cm 이내에서 채취한 토양을 사용하였다. 그리고 공극수량에 따른 출현과 용출곡선을 중금속용액과 치환용 K 이온용액을 가하여 각각의 곡선이 최대와 최소치에 이은 시점까지 조사하였다. 조사 결과 출현과 용출곡선은 대칭을 이루지 않았으며 용액상태로 존재하는 중금속이온의 종류가 증가됨에 따라 용출곡선의 미행이 증가되었을 뿐만 아니라 공극수량도 증가하는 경향을 보였다. 그리고 출현과 용출곡선을 기준하여 곡선의 위와 아래의 면적을 비교하여 본 결과 출현 후 K에 의한 용출면적은 상대적으로 작아 K에 의한 중금속 탈착은 작은 것으로 조사되었는데 이는 중금속이온이 가지는 전기음성도 차이에 기인한 것으로 추정되었다. 결론적으로 토양내에서 중금속이온의 이동은 토양내에서 존재하는 중금속이온의 종류가 2개 이상 존재하는 한 토양의 물리적 비평형과 용액상태의 화학적평형이 중금속이온 이동에 영향을 미치는 것으로 추정하였다.

Keywords

References

  1. Andreas Voegelin, K. Barmettler, and R. Kretzschmar. 2003. Heavy Metal Release from Contaminated Soils: Comparison of Column Leaching and Batch Extraction Results. J. Environ. Qual. 32:865-875 https://doi.org/10.2134/jeq2003.0865
  2. Brusseau M. L., R. E. Jessup, and P. S. C. Rao. 1989. Modeling the transport of solutes influenced by multiprocess nonequilibrium. Water Resou. Res. 25: 1971-1988 https://doi.org/10.1029/WR025i009p01971
  3. Brusseau M. L. and P. S. C. Rao. 1990. Modeling solute transport in structured soils: A review. Geoderma, 46: 169-192 https://doi.org/10.1016/0016-7061(90)90014-Z
  4. Evans, L. J. 1989. Chemistry of metal retention by soils-Several processes are explained. Environ. Sci. Tech. 23:1046-1056 https://doi.org/10.1021/es00067a001
  5. Grolimund, D., M. Borkovec, K. Barmettler, and H. Sticher. 1996. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: A laboratory column study. Environ. Sci. Technol. 30:3118-3123 https://doi.org/10.1021/es960246x
  6. Hutson, J. L., and R. J. Wagenet. 1995. A multiregion model describing water flow and solute transport in heterogeneous soils, Soil Sci. Soc. Am. J. 59:743-751 https://doi.org/10.2136/sssaj1995.03615995005900030016x
  7. Kedziorek, M. A. M., A. Dupuy, A. C. M. Bourg, and F. Compere. 1998. Leaching of Cd and Pb from a polluted soil during the percolation of EDTA: Laboratory column experiments modeled with a non-equilibrium solubilization step. Environ. Sci. Technol. 32:1609-1614 https://doi.org/10.1021/es970708m
  8. Kretzschmar, R., and H. Sticher. 1997. Transport of humic-coated iron oxide colloids in a sandy soil: Influence of $Ca^{2+}$ and trace metals. Environ. Sci. Technol. 31:241-255
  9. Manceau, A., B. Lanson, M. L. Schlegel, J. C. Harge, M. Musso, L. Eybert-Berard, J.L. Hazemann, D. Chateigner, and G.M. Lamble. 2000. Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. Am. J. Sci. 300:289-343 https://doi.org/10.2475/ajs.300.4.289
  10. McBride, M. B. 1994. Environmental chemistry of soils. Oxford University Press. New York
  11. McBride, M. B., S. Sauve, and W. Hendershot. 1997. Solubility control of Cu, Zn, Cd, and Pb in contaminated soils. Eur. J. Soil Sci. 48:337-346 https://doi.org/10.1111/j.1365-2389.1997.tb00554.x
  12. McBride, M. B. 1999. Chemisorption and precipitation reactions. In M.E. Sumner (ed.) Handbook of soil science. p. 265-302. CRC Press, Boca Raton, FL
  13. Morin, G., J. D. Ostergren, F. Juillot, P. Ildefonse, G. Calas, and G. E. Brown, Jr. 1999. XAFS determination of the chemical form of lead in smelter-contaminated soils and mine tailings: Importance of adsorption processes. Am. Mineral. 84:420-434 https://doi.org/10.2138/am-1999-0327
  14. NIAST. 2000. Methods of soil analysis. NIAST
  15. Nkedi-Kizza P., J. W. Biggar, M. Th. van Genuchten, P. J. Wierenga, H. M. Selim, J. M. Davidson, and D. R. Nielsen. 1983. Modeling tritium and chloride 36 transport through an aggregated Oxisol, Water Resour. Res. 19:691-700 https://doi.org/10.1029/WR019i003p00691
  16. Noh, H. H., and D. Y. Chung. 2005. Competitive Adsorption of Multi-species of Heavy Metals onto Sandy Clay Loam and Clay Soils. Korean Soc. Soil Sci. Fert. (Submitted)
  17. Reedy O. C., P. M. Jardine, G. W. Wilson, and H. M. Selim. 1996. Quantifying the diffusive mass transfer of nonreactive solutes in columns of fractured saprolite using flow interruption. Soil Sci. Soc. Am. J. 60: 1376-1384 https://doi.org/10.2136/sssaj1996.03615995006000050012x
  18. Smith, S., and S. P. McGrath. 1990. Chromium and nickel. In B.J. Alloway (ed.) Heavy metals in soil. p. 125 150. Glasgow, Academic & Professional, London
  19. Sun B, F. J, Zhao, E. Lombi, S. P. McGrath. 2001. Leaching of heavy metals from contaminated soils using EDTA. Environ Pollut. 113: 111-120 https://doi.org/10.1016/S0269-7491(00)00176-7
  20. Temminghoff, E. J. M., S. E. ATM. van der Zee, and F. A. M. de Haan. 1997. Copper mobility in a copper contaminated sandy soil as affected by pH, solid and dissolved organic matter. Environ. Sci. Technol. 31:1109-1115 https://doi.org/10.1021/es9606236