• Title/Summary/Keyword: ${\beta}$-1, 3-glucanase and peroxidase activities

Search Result 6, Processing Time 0.021 seconds

Expression Patterns of Enzymes in Different Tissues of Oil Seed Rape (Brassica napus L.) Seedling (유료용 유채 유식물의 조직내 효소의 발현 패턴)

  • Song, Yong-Su;Seo, Dong-Jun;Lee, Bok-Rye;Jung, Woo-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.2
    • /
    • pp.51-57
    • /
    • 2009
  • To investigate expression patterns of chitinase, ${\beta}$-1,3-glucanase and peroxidase involved in biological control of phytopathogens, three oil seed rapes (Capitol, Pollen and Saturnin) were used. Activities of the enzymes in old leaves were $9.7{\sim}11.8$ unit/mg protein in chitinase, $11.1{\sim}17.3$ unit/mg protein in ${\beta}$-1,3-glucanase and $0.6{\sim}1.7$ unit/mg protein in peroxidase. Activities of the enzymes in roots were $39.2{\sim}49.0$ unit/mg protein in chitinase, $49.9{\sim}62.0$ unit/mg protein in ${\beta}$-1,3-glucanase and $2.4{\sim}3.8$ unit/mg protein in peroxidase. Chitinase and ${\beta}$-1,3-glucanase activity were the highest level in Saturnin leaves and in Capitol roots while activities of those were the lowest level in Capitol leaves. Also, chitinase and ${\beta}$-1,3-glucanase and peroxidase activity were the lowest level in Saturnin roots. Active bands of chitinase isoform in leaves (73, 51, 40, 34, and 29 kDa) and in roots (100, 57 34, and 29 kDa) tissues showed in the SDS-PAGE gel. Active bands of ${\beta}$-1,3-glucanase isoform in leaves and roots (75 and 55 kDa) tissues showed on the SDS-PAGE gel. Active staining of peroxidase showed the strongest level in leaves and roots of Pollen. Active bands of peroxidase isoform in leaves (122, 114, and 93 kDa) and in roots (135, 122, 114, and 93 kDa) tissues showed on the Native-PAGE gel. These results indicated that establishment of expression pattern of enzymes in rape tissues could play as an important role with respect to resistance of plant pathogens in rape.

Effect of Chitin Compost on Biological control of Fusarium wilt in Tomato Field (키틴퇴비를 이용한 토마토의 Fusarium 시들음병의 생물학적 제어)

  • Jin, Rong-De;Cho, Min-Young;Kim, Sung-Jae;Ryu, Ji-Yeon;Chae, Dong-Hyeon;Kim, Yong-Woong;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.15-20
    • /
    • 2006
  • Biological control by chitinolytic microorganisms is being evaluated as management options for soilborne diseases. Forty kilograms of chitin compost (CTC) and control compost (CC) were amended on tomato plots ($15m{\times}0.5m$) 7 d before transplanting to evaluate enzymatic activities and the control of Fusarium wilt. Samples were taken on day 1, 3, 5, and 7, the day 1 corresponded to the 66 d after transplanting, the day on which the initial wilting symptoms occurred in plants of CC treated plots. The chitinase activity in soil of CTC was always higher compared to the control. Pathogenesis related (PR) protein (chitinase, ${\beta}$-1, 3-glucanase and peroxidase) activities in tomato roots in CC increased every day and showed marked differences compared to CTC. Wilting symptoms (96 d after transplanting) were reduced by 25% in CTC compared to the control. Protection of tomato plant may be correlated with the high levels of soil enzyme activities resulting from the chitin compost.

Induction of Defense Related Enzymes and Pathogenesis Related Proteins in Pseudomonas fluorescens-Treated Chickpea in Response to Infection by Fusarium oxysporum f. sp. ciceri

  • Saikia, Ratul;Kumar, Rakesh;Singh, Tanuja;Srivastava, Alok K.;Arora, Dilip K.;Lee, Min-Woong
    • Mycobiology
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • Pseudomonas fluorescens 1-94 induced systemic resistance in chickpea against Fusarium wilt of chickpea caused by Fusarium oxysporum f. sp. ciceri by the synthesis and accumulation of phenolic compounds, phenylalanine ammonia lyase(PAL) and pathogenesis related(PR) proteins(chitinase, $\beta$-1,3-glucanase and peroxidase). Time-course accumulation of these enzymes in chickpea plants inoculated with P. fluorescens was significantly(LSD, P=0.05) higher than control. Maximum activities of PR-proteins were recorded at 3 days after inoculation in all induced plants; thereafter, the activity decreased progressively. Five PR peroxidases detected in induced chickpea plants. Molecular mass of these purified peroxidases was 20, 29, 43, 66 and 97 kDa. Purified peroxidases showed antifungal activity against plant pathogenic fungi.

Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants

  • Kim, Ji-Seong;Lee, Jeongeun;Lee, Chan-Hui;Woo, Su Young;Kang, Hoduck;Seo, Sang-Gyu;Kim, Sun-Hyung
    • The Plant Pathology Journal
    • /
    • v.31 no.2
    • /
    • pp.195-201
    • /
    • 2015
  • Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding ${\beta}$-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

Quantitative Changes of Plant Defense Enzymes in Biocontrol of Pepper (Capsicium annuum L.) Late Blight by Antagonistic Bacillus subtilis HJ927

  • LEE HYUN-JIN;PARK KEUN-HYUNG;SHIM JAE-HAN;PARK RO-DONG;KIM YONG-WOONG;CHO JEUNG-YONG;HWANGBO HOON;KIM YOUNG-CHEOL;CHA GYU-SUK;KRISHNAN HARI B.;KIM KIL-YONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1073-1079
    • /
    • 2005
  • To investigate plant protection, pathogenesis-related (PR) proteins and plant defense enzymes related to cell wall lignification were studied in pepper plants inoculated with antagonistic Bacillus subtilis HJ927 and pathogenic strain Phytophthora capsici. Phytophthora blight disease was reduced by $53\%$ in pepper roots when preinoculated with B. subtilis HJ927 against P. capsici. The activities of PR proteins (chitinase and ${\beta}$-1,3,-glucanase) and defense-related enzymes (peroxidase, polyphenoloxidase, and phenylalanine ammonia lyase) decreased in roots of B. subtilis+P capsid-treated plants, but increased in leaves with time. The decrease and increase were much greater in P. capsici-treated plants than in B. subtilis HJ927+P capsici-treated plants, although P. capsici-treated plants had more severe damage. Therefore, changes of enzyme activities do not seem to be directly related to plant protection. We suggest that the change of these enzymes in pathogen-treated plants may be related to plant response rather than to resistance against pathogen attacks.

Quantitative Changes of PR Proteins and Antioxidative Enzymes in Response to Glomus intraradices and Phytophthora capsici in Pepper (Capsicum annuum L.) Plants

  • Zheng, Hu-Zhe;Kim, Yong-Woong;Lee, Hyun-Jin;Park, Ro-Dong;Jung, Woo-Jin;Kim, Young-Cheol;Lee, Sang-Hyun;Kim, Tae-Hwan;Kim, Kil-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.553-562
    • /
    • 2004
  • To investigate protective activity in pepper plants, which were pre-inoculated with arbuscular mycorrhizal (AM) fungi Glomus intra radices (Gi), against pathogenic strain Phytophthora capsici (Pc), pathogenesis-related (PR) proteins and antioxidant enzymes were examined. The growth of root and shoot was the highest in peppers inoculated with G. intraradices, compared with non-inoculated control plants and those challenged by the pathogen with and without mycorrhizae after nine days of infection. Mycorrhizal colonization rate was reduced by about 10% in pathogen-challenged plants, but disease pressure was reduced. The activities of PR proteins, $\beta$-1- 3-glucanase and chitinase, were increased in Pc-treated plants compared to Gi+Pc-treated plants in leaves, but those in roots were suppressed. Superoxide dismutase activity and $H_2O_2${/TEX> content in Gi+Pc and Pc-treated plants were gradually increased in leaves. However, those in roots continuously increased up to 5 days, and then decreased dramatically. Peroxidase activity in leaves and roots increased after P. capsici infection both in plants inoculated with or without G. intraradices. These results suggest that AM fungi, G. intra radices, potentially act as one of the protective agents against plant pathogens. Changes of PR proteins and antioxidative enzymes in mycorrhizae-inoculated pepper appear to be regulated differently in leaves and roots by pathogen infection.