References
- W. Bertram, The geometry of Jordan and Lie structures, Lecture Notes in Math- ematics, 1754. Springer-Verlag, Berlin, 2000
- J. Faraut and A. Koranyi, Analysis on symmetric cones, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford Univer- sity Press, New York, 1994
- L. Faybusovich, A Jordan-algebraic approach to potential-reduction algorithms, Math. Z. 239 (2002), no. 1, 117-129 https://doi.org/10.1007/s002090100286
- L. Faybusovich and T. Tsuchiya, Primal-dual algorithms and infinite-dimen-sional Jordan algebras of finite rank, Math. Program. 97 (2003), no. 3, Ser. B, 471-493 https://doi.org/10.1007/s10107-003-0424-4
- M. Fiedler and V. Ptak, A new positive definite geometric mean of two positive definite matrices, Linear Algebra Appl. 251 (1997), 1-20 https://doi.org/10.1016/0024-3795(95)00540-4
- R. A. Hauser, Self-scaled barriers for semidefinite programming, Numerical Anal- ysis Report DAMTP 2000/NA02, Department of Applied Mathematics and The- oretical Physics, Silver Street, Cambridge, England CB3 9EW, March 2000
- R. A. Hauser and O. Guler, Self-scaled barrier functions on symmetric cones and their classification, Found. Comput. Math. 2 (2002), no. 2, 121-143 https://doi.org/10.1007/s102080010022
- R. A. Hauser and Y. Lim, Self-scaled barriers for irreducible symmetric cones, SIAM J. Optim. 12 (2002), no. 3, 715-723 https://doi.org/10.1137/S1052623400370953
- A. Kalliterakis, Estimations a l'infini des fonctions de Bessel associees aux repre- sentations d'une algebre de Jordan, J. Lie Theory 11 (2001), no. 2, 273-303
- W. Kaup, Jordan algebras and holomorphy, Functional analysis, holomorphy, and approximation theory, Lecture Notes in Math., 843, Springer, Berlin, 1981
- M. Koecher, The Minnesota notes on Jordan algebras and their applications, Edited, annotated and with a preface by Aloys Krieg and Sebastian Walcher, Lecture Notes in Mathematics, 1710. Springer-Verlag, Berlin, 1999
- B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. (4) 6 (1973), 413-455 (1974)
- O. Kowalski, Generalized symmetric spaces, Lecture Notes in Mathematics, 805. Springer-Verlag, Berlin-New York, 1980
- S. Lang, Fundamentals of differential geometry, Graduate Texts in Mathematics, 191. Springer-Verlag, New York, 1999
- J. D. Lawson and Y. Lim, The geometric mean, matrices, metrics, and more, Amer. Math. Monthly 108 (2001), no. 9, 797-812 https://doi.org/10.2307/2695553
- J. D. Lawson and Y. Lim, Means on dyadic symmetric sets and polar decompositions, Abh. Math. Sem. Univ. Hamburg 74 (2004), 135-150 https://doi.org/10.1007/BF02941530
- Y. Lim, Geometric means on symmetric cones, Arch. Math. (Basel) 75 (2000), no. 1, 39-45 https://doi.org/10.1007/s000130050471
- Y. Lim, Applications of geometric means on symmetric cones, Math. Ann. 319 (2001), no. 3, 457-468 https://doi.org/10.1007/PL00004442
- Y. Lim, Best approximation in Riemannian geodesic submanifolds of positive definite matrices, Canad. J. Math. 56 (2004), no. 4, 776-793 https://doi.org/10.4153/CJM-2004-035-5
- Y. Lim, J. Kim, and L. Faybusovich, Simultaneous diagonalization on simple Euclidean Jordan algebras and its applications, Forum Math. 15 (2003), no. 4, 639-644 https://doi.org/10.1515/form.2003.034
- K. -H. Neeb, A Cartan-Hadamard theorem for Banach-Finsler manifolds, Geom. Dedicata 95 (2002), 115-156 https://doi.org/10.1023/A:1021221029301
- W. Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Dusseldorf-Johannesburg, 1973
- H. Upmeier, Symmetric Banach manifolds and Jordan C*-algebras, North- Holland Mathematics Studies, 104, North-Holland Publishing Co., Amsterdam, 1985