• Title/Summary/Keyword: Cartan decomposition

Search Result 3, Processing Time 0.018 seconds

DECOMPOSITION FOR CARTAN'S SECOND CURVATURE TENSOR OF DIFFERENT ORDER IN FINSLER SPACES

  • Abdallah, Alaa A.;Navlekar, A.A.;Ghadle, Kirtiwant P.;Hamoud, Ahmed A.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.433-448
    • /
    • 2022
  • The Cartan's second curvature tensor Pijkh is a positively homogeneous of degree-1 in yi, where yi represent a directional coordinate for the line element in Finsler space. In this paper, we discuss the decomposition of Cartan's second curvature tensor Pijkh in two spaces, a generalized 𝔅P-recurrent space and generalized 𝔅P-birecurrent space. We obtain different tensors which satisfy the recurrence and birecurrence property under the decomposition. Also, we prove the decomposition for different tensors are non-vanishing. As an illustration of the applicability of the obtained results, we finish this work with some illustrative examples.

JORDAN AUTOMORPHIC GENERATORS OF EUCLIDEAN JORDAN ALGEBRAS

  • Kim, Jung-Hwa;Lim, Yong-Do
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.507-528
    • /
    • 2006
  • In this paper we show that the Koecher's Jordan automorphic generators of one variable on an irreducible symmetric cone are enough to determine the elements of scalar multiple of the Jordan identity on the attached simple Euclidean Jordan algebra. Its various geometric, Jordan and Lie theoretic interpretations associated to the Cartan-Hadamard metric and Cartan decomposition of the linear automorphisms group of a symmetric cone are given with validity on infinite-dimensional spin factors

A FAMILY OF SERIES AND INTEGRALS INVOLVING WHITTAKER, BESSEL FUNCTIONS, AND THEIR PRODUCTS DERIVABLE FROM THE REPRESENTATION OF THE GROUP SO(2, 1)

  • Choi, Junesang;Shilin, I.A.
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.999-1008
    • /
    • 2017
  • By mainly using certain properties arising from the semisimple Lie group SO(2, 1), we aim to show how a family of some interesting formulas for bilateral series and integrals involving Whittaker, Bessel functions, and their product can be obtained.