Sputtering of Fe(100) Substrate Due to Energetic Ion Bombardments: Investigation with Molecular Dynamics Simulations

분자 동역학 모사를 이용한 Fe(100) 표면의 스퍼터링 해석

  • Kim Dong-Ho (Korea Institute of Machinery and Materials, Surface Technology Research Center)
  • 김동호 (한국기계연구원 재료기술연구소 표면기술연구센터)
  • Published : 2006.04.01

Abstract

Molecular dynamics simulations were carried out to investigate physical sputtering of Fe(100) substrate due to energetic ion bombardments. Repulsive interatomic potentials at short internuclear distances were determined with ab initio calculations using the density functional theory. Bohr potentials were fitted to the ab initio results on diatomic pairs (Ar-Fe, Fe-Fe) and used as repulsive screened Coulombic potentials in sputtering simulations. The fitted-Bohr potentials improve the accuracy of the sputtering yields predicted by molecular dynamics for sputtering of Fe(100), whereas Moliere and ZBL potentials were found to be too repulsive and gave relatively high sputtering yields. In spite of assumptions and limitations in this simulation work, the sputtering yields predicted by the molecular dynamics method were in fairly good accordance with the obtainable experimental data in absolute values as well as in manner of the variation according to the Incident energy. Threshold energy for sputtering of Fe(100) substrate was found to be about 40 eV. Additionally, distributions of kinetic energies of sputtered atoms and their original depths could be obtained.

Keywords

References

  1. D.-H. Kim, G.-H. Lee, S. Y. Lee, D. H. Kim, J. Cryst. Growth, 286 (2006) 71
  2. L. A. Marques, M. Jaraiz, J. E. Rubio, J. Vicente, L. A. Bailon, J. Barbolla, Materials Sci. Technol, 13 (1997) 893 https://doi.org/10.1179/026708397790285386
  3. K. Beardmore, N. Gronbech-Jensen, Phys. Rev. E, 57 (1998) 7278
  4. D. Frenkel, B. Smit, Understandig Molecular Simulation: From Algorith to Application, Academic Press, New York, (1996)
  5. M. T. Robinson; in R. Behrisch (Ed.), Sputtering by Particle Bombardment I, Springer- Verlag, Germany, 1981
  6. M. A. Karolewski, Nucl. Instr. and Meth. B, 243 (2006) 43 https://doi.org/10.1016/j.nimb.2005.07.192
  7. M. H. Shapiro, P. Lu, Nucl. Instr. and Meth. B, 215 (2004) 326 https://doi.org/10.1016/j.nimb.2003.08.036
  8. M. A. Karolewski, Nucl. Instr. and Meth. B, 230 (2005) 402 https://doi.org/10.1016/j.nimb.2004.12.074
  9. M. A. Karolewski, Radiat. Eff. Def. Solids, 153 (2001) 239 https://doi.org/10.1080/10420150108211842
  10. N. Stritt, J. Jolie, M. Jentschel, H. G. Borner, C. Doll, J. Res. Natl. lnst. Stand. Technol, 105 (2000) 71 https://doi.org/10.6028/jres.105.009
  11. C. H. Weijsenfeld, A. Hoogendoorn, M. Koedam, Physica, 27 (1961) 763 https://doi.org/10.1016/0031-8914(61)90093-3
  12. N. Laegreid, G. K. Wehner, J. Appl. Phys, 32 (1961) 365 https://doi.org/10.1063/1.1736012
  13. M. P. Seah, C. A. Clifford, F. M. Green, I. S. Gilmore, Surf. Interface Anal, 37 (2005) 444 https://doi.org/10.1002/sia.2032
  14. K. Wittmmaack, Phys. Rev. B, 68 (2003) 235211 https://doi.org/10.1103/PhysRevB.68.235211
  15. J. F. Ziegler, J. P. Biersack, SRIM-2003 Tables, srim.com, Annapolis, MD, USA, 2003