STM Study of Self Assembled Monolayer Formed from Binary Mixtures of Substituted Alkyl Chains

치환된 알킬 사슬 혼합물의 자기조립 단분자막 구조지 STM 연구

  • Son S.B. (Department of Chemistry, Chonbuk National University, Korea Basic Science Institute) ;
  • Lee H. (Korea Basic Science Institute) ;
  • Jeon I.C. (Department of Chemistry, Chonbuk National University) ;
  • Hahn J.R. (Department of Chemistry, Chonbuk National University)
  • 손승배 (전북대학교 화학과, 한국기초과학지원연구원) ;
  • 이해성 (한국기초과학지원연구원) ;
  • 전일철 (전북대학교 화학과) ;
  • 한재량 (전북대학교 화학과)
  • Published : 2006.03.01

Abstract

The molecular assembly of p-iodo-phenyl octadecyl ether (I-POE), p-iodo-phenyl docosyl ether (I-PDE) and a binary mixture of these two molecules on graphite has been studied using a scanning tunneling microscope. Each molecular system self-assembles on the graphite surface to form a stable monolayer with a head-to-tail configuration. For the binary system, the I-POE and I-PDE molecules do not mix on the surface, preferring instead to form isolated monolayer domains. Here, the I-POE molecules are preferentially adsorbed on the graphite surface, due to the effects of alkyl chain length and the functional group on the monolayer structure.

p-iodo-phenyl octadecyl ether (I-POE)와 p-iodo-phenyl docosyl ether (I-PDE)의 분자의 흑연표면에서의 자기조립과 이 두 분자로 이루어진 혼합물의 자기조립을 주사 터널링 현미경을 이용하여 연구하였다. 각 분자 시스템은 흑연 표면에서 head-to-tail 배향의 안정된 단분자막으로 자기조립한다. 혼합물 시스템에서는 I-POE와 I-PDE 분자들은 표면에서 섞이지 않고, 고립된 단분자막 도메인을 형성한다. 특히 I-POE 분자는 흑연 표면에서 단분자막 구조를 우선적으로 형성하는데 이는 알킬 사슬 길이와 작용기를 가진 헤드 그룹의 효과에 기인한다.

Keywords

References

  1. J. K. Spong, H. A. Mizes, L. J. LaComb Jr, M. M. Dovek, J. E. Frommer, and J. S. Foster, Nature 338, 137 (1989) https://doi.org/10.1038/338137a0
  2. D. P. E. Smith, H. Horber, Ch. Gerber, and G. Binnig, Science 245, 43 (1989) https://doi.org/10.1126/science.245.4913.43
  3. C. L. Claypool, F. Faglioni, W. A. Goddard III, H. B. Gray, N. S. Lewis, and R. A. Marcus, J. Phys. Chem. B 101, 5978 (1997) https://doi.org/10.1021/jp9701799
  4. S. De Feyter and F. C. De Schryver, Phys. Chem. B 109, 4290 (2005) https://doi.org/10.1021/jp045298k
  5. J. P. Rabe and S. Buchholz, Science 253, 424 (1991) https://doi.org/10.1126/science.253.5018.424
  6. J. P. Rabe and S. Buchholz, Angew. Chem. Int. Ed. Engl. 31, 189 (1992) https://doi.org/10.1002/anie.199201891
  7. Y. H. Yeo, G. C. McGonigal, and D. J. Thomson, Langmuir 9, 649 (1993) https://doi.org/10.1021/la00027a006
  8. H. S. Lee, S. Iyengar, and I. H. Musselman, Anal. Chem. 73, 5532 (2001) https://doi.org/10.1021/ac0107812
  9. H. S. Lee, S. Iyengar, and I. H. Musselman, Langmuir 14, 7475 (1998)
  10. Y. Okawa and M. Aono, Nature 409, 683 (2001) https://doi.org/10.1038/35055625
  11. F. Charra and J. Cousty, Phys. Rev. Lett. 80, 1682 (1998) https://doi.org/10.1103/PhysRevLett.80.1682
  12. H. Fang, L. C. Giancarlo, and G. W. Flynn, J. Phys. Chem. B 102, 7311 (1998) https://doi.org/10.1021/jp981960z
  13. C. L. Poulennec, J. Cousty, Z. X. Xie, and M. Mioskowski, Surf. Sci. 448, 93 (2000) https://doi.org/10.1016/S0039-6028(99)01106-1
  14. A. Wawkuschewski, H. J. Cantow, and S. N. Magonov, Langmuir 9, 2778 (1993) https://doi.org/10.1021/la00035a008
  15. R. Hentschke, B. L. Schurmann, and J. P. Rabe, J. Chem. Phys. 96, 6213 (1992) https://doi.org/10.1063/1.462612
  16. L. Askadskaya and J. P. Rabe, Phys. Rev. Lett. 69, 1395 (1992) https://doi.org/10.1103/PhysRevLett.69.1395
  17. F. Thibaudau, G. Watel, and J. Cousty, Surf. Sci. 281, L303 (1993) https://doi.org/10.1016/0039-6028(93)90844-A
  18. J. P. Bucher, H. Roeder, and K. Kern, Surf. Sci. 289, 370 (1993) https://doi.org/10.1016/0039-6028(93)90668-A
  19. B. Venkataraman, G. W. Flynn, J. L. Wilbur, J. P. Folkers, and G. M. Whitesides, J. Phys. Chem. 99, 8684 (1995) https://doi.org/10.1021/j100021a038
  20. D. M. Cyr, B. Venkataraman, G. W. Flynn, A. Black, and G. M. Whitesides, J. Phys. Chem. 100, 13747 (1996) https://doi.org/10.1021/jp9606467
  21. B. Venkataraman, J. J. Breen, and G. W. Flynn, J. Phys. Chem. 99, 6608 (1995) https://doi.org/10.1021/j100017a050
  22. S. L. Xu, S. X. Yin, H. P. Liang, C. Wang, L. J. Wan, and C. L. Bai, J. Phys. Chem. B 108, 620 (2004) https://doi.org/10.1021/jp035425x
  23. G. H. Findenegg and M. Liphard, Carbon 25, 119 (1987) https://doi.org/10.1016/0008-6223(87)90048-0
  24. G. C. McGonigal, R. H. Bernhardt, and D. J. Thomson, Appl. Phys. Lett. 57, 28 (1990) https://doi.org/10.1063/1.104234
  25. J. Cousty and L. Pham Van, Phys. Chem. Chem. Phys. 5, 599 (2003) https://doi.org/10.1039/b206529k
  26. N. J. Leonard, D. L. Felley, and E. D. Nicolaides, J. Am. Chem. Soc. 74, 1700 (1952) https://doi.org/10.1021/ja01127a026
  27. E. P. Gilbert, P. A. Reynolds, A. S. Brown, and J. W. White, Chem. Phys. Lett. 255, 373 (1996) https://doi.org/10.1016/0009-2614(96)00371-5
  28. E. P. Gilbert, Phys. Chem. Chem. Phys. 1, 1517 (1999) https://doi.org/10.1039/a808664h
  29. D. Clavell-Grunbaum, H. L. Strauss, and R. G. Snyder, J. Phys. Chem. B 101, 335 (1997) https://doi.org/10.1021/jp962616+