화학적 방법을 이용한 $TiO_2$ 박막제조 및 응용

Formation of $TiO_2$ thin film using chemical methods and the application

  • ;
  • 정광덕 (수소에너지연구센터, 한국과학기술연구센터) ;
  • 주오심 (수소에너지연구센터, 한국과학기술연구센터)
  • Lokhande, C.D. (Hydrogen Energy Research Center, Korea Institute of Science and technology) ;
  • Jung, Kwang-Deog (Hydrogen Energy Research Center, Korea Institute of Science and technology) ;
  • Joo, Oh-Shim (Hydrogen Energy Research Center, Korea Institute of Science and technology)
  • 발행 : 2006.06.15

초록

PEC전지 전극으로 사용될 수 있는 CdSe는 수용액상에서 광부식이 심하기 때문에 투명한 보호막이 필요하다. TiO2는 광부식이 심한 광전극의 보호막으로 적당하며 이 논문에서 화학적 방법(전기증착과 화학조증착)을 이용하여 산성용액이나 알칼리용액에서 TiO2 박막을 제조하여 광흡수나 광전류를 측정하였다. XRD를 이용해서 제조된 TiO2 박막의 결정성을 확인하였으며 막의 표면특성은 SEM으로 측정하였으며 광흡수 특성이 관찰되었다. 제조된 TiO2 박막의 광전류는 100 mw/cm2의 광세기를 가지는 제논 램프를 이용하여 측정하였다. CdSe에 TiO2박막을 코팅했을 때의 CdSe막의 광흡수와 광전류를 측정하여 TiO2 코팅효과를 관찰하였다.

키워드

참고문헌

  1. T. N. Rao, D. A. Tryk and A. Fujishima, in 'Encyclopedia of Electrochemistry, Edited by S. Licht, Wiley-VCH, Weinheim, Vol. 6, 2002, p. 536
  2. A. Fujishima and D. A. Tryk, in 'Encyclopedia of Electrochemistry, Edited by S. Licht, Wiley-VCH, Weinheim, Vol. 6, 2002, p. 497
  3. A. J. McEvoy and M. Gratzel, in 'Encyclopedia of Electrochemistry, Edited by S. Licht, Wiley-VCH, Weinheim, Vol. 6, 2002, p. 397
  4. Y. Matsumto, Y. Ishikawa, M. Nishida and S. Ii, J. Phys. Chem. B, Vol. 104, 2000, pp. 4204 https://doi.org/10.1021/jp9944177
  5. C. S. Fang, and Y. W. Chen, Mater. Chem. Phys, Vol. 78, 2003, p. 739 https://doi.org/10.1016/S0254-0584(02)00416-9
  6. X. Qian, D. Qin, Q. Song, Y. Bai, T. Li, X. Tang, E. Wang and S. Wang, Thin Solid Films, Vol. 385, 2001, p. 152 https://doi.org/10.1016/S0040-6090(01)00771-4
  7. J. Aarik, A. Aidla, T. Uustare, K. Kukli, V. Sarnmelselg, M. Ritala and M. Leskela, Appl. Surface Sci, Vol. 193, 2002, p. 277 https://doi.org/10.1016/S0169-4332(02)00497-X
  8. E. A. Barringer and H. K. Bowen, Commun. Am. Ceram. Soc, 1982, p. 199
  9. M. Kato, T. Ogihara, M. Ikeda, N. Mitzutani, J. Am. Ceram. Soc, Vol. 72, 1989, p. 1598 https://doi.org/10.1111/j.1151-2916.1989.tb06288.x
  10. G. Smestad, C. Bignozzi and R.. Argazzi, Solar Energy Mater Sol. Cells, Vol. 32, 1994, p.259 https://doi.org/10.1016/0927-0248(94)90263-1
  11. S.Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gratzel and A. J. Nozik, J. Phys. Chem. B, Vol. 101, 1997, p. 2576 https://doi.org/10.1021/jp962377q
  12. E. Vigil, L. SaadOllll, R. Rodriguez-Clemente, J. A. Ayllon, X. Domenech, J. Mater. Sci. Lett, Vol. 18, 1999, p. 1067 https://doi.org/10.1023/A:1006691320224
  13. C. Natarajan and G. Nogami, J. Electrochem. Soc, Vol. 143, 1996, p. 1547 https://doi.org/10.1149/1.1836677
  14. I. Zhitomirsky, Mater Lett, Vol. 33, 1998, p. 310
  15. I. Zhitomirsky, J. Mater Science, Vol. 34, 1999, p. 2441 https://doi.org/10.1023/A:1004570918347
  16. I. Zhitomirsky, JOM-e, Vol. 52, 2000, pp. 1-15 https://doi.org/10.1007/s11837-000-0190-1
  17. L. Kavan, B. O'Regan, A. Kay and M. Gratzel, J. Electroanal. Chem, Vol. 346, 1993, p. 297
  18. C. D. Lokhande, Sun-Ki Min, Kwang-Deog Jung and Oh-Shim Joo, J. Mate Sci. (submitted)
  19. R. Flood, B. Enright, M. AlIen, S. Barry, A. Dalton, H. Doyle, D. Tynan and D. Fitzmaurice, Solar Energy Mater. Sol. Cells, Vol. 39, 1995, p. 83 https://doi.org/10.1016/0927-0248(95)00054-2
  20. M. M. Lencka and R. E. Riman, Chem Mater, Vol. 5, 1993, p. 61 https://doi.org/10.1021/cm00025a014
  21. F. P. Rotzinger and M. gratzel, Inorg Chem, Vol. 26, 1987, p. 3704 https://doi.org/10.1021/ic00269a017
  22. P. Lobi, M. Huppertz and D. Mergel, Thin Solid Films, Vol. 251, 1994, p. 72 https://doi.org/10.1016/0040-6090(94)90843-5
  23. C. D. Lokhande, Eun-Ho Lee, Kwang-Deog Jung and Oh-Shim Joo, Mater Chem Phys (submitted).
  24. JCPDS data card No. 21-1272
  25. N. Serpone, D. Lawless, R. Khairutdinov, J. Phys. Chem, Vol. 99, 1995, p. 16646 https://doi.org/10.1021/j100045a026
  26. K. W. Frese, J. Appl. Phys .Lett, Vol. 40, 1982, p. 275 https://doi.org/10.1063/1.93036
  27. G. Hodes, D. Cahen, J. Manassen and M. David, J Electrochem. Soc, Vol. 127, 1980, p. 2252 https://doi.org/10.1149/1.2129386
  28. H. Minoura and T. Sugiura, in, 'Encyclopedia of Electrochemistry', Volume 6: Semiconductor electrodes and photoelectrochemistry, Edited by S. Licht, Wiley-VCH, Weinheim, 2002
  29. S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura and H. Minoura, Solid State lonics, Vol. 151, 2002, p. 19 https://doi.org/10.1016/S0167-2738(02)00599-4
  30. S. J. Lade, M. D. Uplane, M. M. Uplane and C. D. Lokhande, J. Mater Sci: Materials in Electronics, Vol. 9, 1998, p. 477 https://doi.org/10.1023/A:1008966428339
  31. A. HelIer and B. Miller, Electrochim. Acta, Vol. 25, 1980, p. 29 https://doi.org/10.1016/0013-4686(80)80051-X
  32. A. Fujishirna and K .Honda, Nature, Vol. 238, 1972, p. 37 https://doi.org/10.1038/238037a0
  33. S. U. M. Khan and T. Sultana, Solar Energy Mater. Sol. Cells, Vol. 76, 2003, p. 211 https://doi.org/10.1016/S0927-0248(02)00394-X
  34. Y. Ishikawa and Y. Matsumoto, Electrochim Acta, Vol. 46, 2001, p. 2819 https://doi.org/10.1016/S0013-4686(01)00490-X
  35. J. Yu and X. Zhao, Mater. Res. Bull, Vol. 35, 2000, p. 1293 https://doi.org/10.1016/S0025-5408(00)00327-5
  36. Hao, B. Yang, H. Ren, X. Qian, T. Xie, J. Shen, and D., Li, Mater. Sci. Engineering C, Vol. 10, 1999, p. 119 https://doi.org/10.1016/S0928-4931(99)00116-2