음향반향제거기의 구현을 위한 개선된 직교투사법

Improved Orthogonal Projection Method for Implementing Acoustic Echo Canceller

  • 이행우 (남서울대학교 정보통신공학과)
  • Lee Haeng-Woo (Dept. of Information Communication Engineering, Namseoul University)
  • 발행 : 2006.03.01

초록

본 논문은 음향반향제거기의 성능을 향상시키기 위한 새로운 기술로서 개선된 직교투사법을 제안한다. 간단하고 안정되어 널리 사용되고 있는 기존의 NLMS 알고리즘과 비교하여, 이 기술은 음성신호와 같이 상호상관도가 높은 신호에 대해 수렴속도가 증가하고 연산량이 감소한다. 제안하는 직교투사법의 성능을 시험하기 위하여 프로그램을 코딩하고 시뮬레이션을 수행하였다. 두 알고리즘을 사용하여 음성과 잡음에 대한 수렴특성을 관찰하였다. 실험 결과, 제안한 방법은 잡음뿐만 아니라 음성에 대해서도 높은 ERLE와 수렴속도 및 수렴의 안정성 등을 보여 주었다.

This paper proposes the improved orthogonal projection method as a new technique advancing the performance of the acoustic echo canceller. Comparing with the widely used NLMS adaptive algorithm which is simple and stable, it shows that this method has the improvement of the convergence speed for signals with the large auto-correlation, and has small computational quantities. In order to testify performances of the orthogonal projection method whom this paper proposes, we have coded a simulation program md executed computer simulations. We observed convergence curves by using two adaptive algorithm for noises and speeches. From simulation results for two input signals, the proposed method shows the high ERLE and the fast convergence and the stable operation in case of using speeches as well as noises.

키워드

참고문헌

  1. C. W. K Gritton, D. W. Lin, 'Echo cancellation algorithm,' IEEE ASSP Magazine, vol. 22, pp. 30-38, Apr. 1984 https://doi.org/10.1109/MASSP.1984.1162230
  2. K. Murano, S. Unagami and F. Amano, 'Echo cancellation and applications,' IEEE Comm. Magazine, vol. 28, no. 1, pp. 49-55, Jan. 1990 https://doi.org/10.1109/35.46671
  3. Wenbin Hsu, Frank Chui, David A. Hodges, 'An acoustic echo canceler,' IEEE J. of solid-state circuits, vol. 24, no. 6, pp. 1639-1646, Dec. 1989 https://doi.org/10.1109/4.45000
  4. F. Capman, J. Boudy and P. Lockwood, 'Acoustic Echo Cancellation Using a Fast QR-RLS Algorithm and Multirate Schemes,' in Proc. IEEE Int Conf. Acoust Speech Signal Processing, pp. 969-972, 1995 https://doi.org/10.1109/ICASSP.1995.480337
  5. Kazuhiko Ozeki, Tetsuo Umeda, 'An Adaptive Filtering Algorithm Using an Orthogonal Projection to an Affine Subspace and its properties,' Electronics and Communication in japan, vol. 67-A, no. 5, pp. 19-27, 1984
  6. S. L. Gay and S. Tavathia, 'The Fast Affine Projection Algorithm,' in Proc. IEEE Int. Conf. Acoust. Speech Signal Processing, pp. 3023-3026, 1995 https://doi.org/10.1109/ICASSP.1995.479482
  7. S. L. Gay and J. Benesty, Acoustic Signal Processing for Telecommunication, Boston, MA: Kluwer, 2000
  8. S. G. Kratzer and D. R. Morgan, 'The Partial-Rank Algorithm for Adaptive Beamforming,' in Proc. SPIE Int. Soc. Opt. Eng., vol. 564, pp. 9-14, 1985
  9. M. Rupp, 'A Family of Adaptive Filter Algorithms with Decorrelating Properties,' IEEE Trans. Signal Processing, vol. 46, pp. 771-775, Mar. 1998 https://doi.org/10.1109/78.661344
  10. S. G. Sankaran and A. A. Beex, 'Normalized LMS Algorithm with orthogonal correction factors,' in Proc. 31st Annu. Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, pp. 1670-1673, Nov. 1997 https://doi.org/10.1109/ACSSC.1997.679186
  11. Kaoru Furosawa, Takuji Furusawa, 'A geometric interpretation of adaptive algorithms,' GLOBECOM'87, pp. 49.7.1-49.7.5, Nov. 1987