초록
패턴인식 시스템은 일반적으로 데이터의 전처리, 특징 추출, 학습단계의 과정을 거쳐서 개발되어 진다. 그중에서도 특징 추출 과정은 다차원 공간을 가진 입력 데이터의 복잡도를 줄여서 다음 단계인 학습단계에서 계산 복잡도와 인식률을 향상시키는 역할을 한다. 패턴인식에서 특징 추출 기법으로써 principal component analysis, factor analysis, linear discriminant analysis 같은 방법들이 널리 사용되어져 왔다. 이 논문에서는 singular value decomposition (SVD) 방법이 패턴인식 시스템의 특징 추출과정에 유용하게 사용될 수 있음을 보인다. 특징 추출단계에서 SVD 기법의 유용성을 검증하기 위하여 원격탐사 응용에 적용하였는데, 실험결과는 널리 쓰이는 PCA에 비해 약 25%의 인식률의 향상을 가져온다는 것을 알 수 있다.
The design of a pattern recognition system generally involves the three aspects: preprocessing, feature extraction, and decision making. Among them, a feature extraction method determines an appropriate subspace of dimensionality in the original feature space of dimensionality so that it can reduce the complexity of the system and help to improve successful recognition rates. Linear transforms, such as principal component analysis, factor analysis, and linear discriminant analysis have been widely used in pattern recognition for feature extraction. This paper shows that singular value decomposition (SVD) can be applied usefully in feature extraction stage of pattern recognition. As an application, a remote sensing problem is applied to verify the usefulness of SVD. The experimental result indicates that the feature extraction using SVD can improve the recognition rate about 25% compared with that of PCA.