References
-
S. Ya. Alper, Approximation in the mean of analytic functions of class
$E^p$ (Russian), In: Investigations on the modern problems of the function theory of a complex variable, Moscow: Gosudarstv. Izdat. Fiz.-Mat. Lit. 1960, 273-286 -
J. E. Andersson, On the degree of polynomial approximation in
$E^p$ (D), J. Approx. Theory 19 (1977), no. 1, 61-68 https://doi.org/10.1016/0021-9045(77)90029-6 - J. M. Anderson and J. Clunie, Isomorphisms of the disc algebra and inverse Faber sets, Math. Z. 188 (1985), no. 4, 545-558 https://doi.org/10.1007/BF01161656
-
A. Cavus and D. M. Israfilov, Approximation by Faber-Laurent rational functions in the mean of functions of the class
$L_p(\Gamma)$ with 1 < p <$\infty$ , Approx. Theory Appl.(N.S.) 11 (1995), no. 1, 105-118 - D. Gaier, Lectures on complex approximation, Birkhauser, Boston, Basel, Stuttgart, 1987
- D. Gaier, The Faber operator and its boundedness, J. Approx. Theory 101 (1999), no. 2, 265-277 https://doi.org/10.1006/jath.1999.3400
-
D. M. Israfilov, Approximation by p-Faber polynomials in the weighted Smirnov class
$E^p(G,\omega)$ and the Bieberbach polynomials, Constr. Approx. 17 (2001), no. 3, 335-351 https://doi.org/10.1007/s003650010030 - D. M. Israfilov, Approximation by p-Faber-Laurent rational functions in the weighted Lebesgue spaces, Czechoslovak Math. J. 54 (129) (2004), 751-765 https://doi.org/10.1007/s10587-004-6423-7
- A. Yu. Karlovich, Algebras of singular integral operators with piecewise continuous coefficients on reflexive Orlicz spaces, Math. Nachr. 179 (1996), 187-222 https://doi.org/10.1002/mana.19961790112
- V. Kokilashvili, On analytic functions of Smirnov-Orlicz classes, Studia Math. 31 (1968), 43-59 https://doi.org/10.4064/sm-31-1-43-59
- Ch. Pommerenke, Conforme abbildung und Fekete-punkte, Math. Z. 89 (1965), 422-438 https://doi.org/10.1007/BF01112271
- M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Marcel Dekker, New York, 1991
-
X. C. Shen and L. Zhong, On Lagrange interpolation in
$E^p$ (D) for 1 < p <$\infty$ , (Chinese), Adv. Math. 18 (1989), 342-345 - V. I. Smirnov and N. A. Lebedev, Functions of complex variable: Constructive theory, The M. I. T. Press, Cambridge, Mass., 1968
- P. K. Suetin, Series of Faber Polynomials, Gordon and Breach, 1. Reading, 1998
- L. Zhong and L. Zhu, Convergence of the interpolants based on the roots of Faber polynomials, Acta Math. Hungar. 65 (1994), no. 3, 273-283 https://doi.org/10.1007/BF01875155
- L. Y. Zhu, A kind of interpolation nodes, (chinese) Adv. Math., 1994
Cited by
- Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent vol.63, pp.1, 2011, https://doi.org/10.1007/s11253-011-0485-0
- Approximating Polynomials for Functions of Weighted Smirnov-Orlicz Spaces vol.2012, 2012, https://doi.org/10.1155/2012/982360
- On approximation in weighted Smirnov–Orlicz classes vol.57, pp.5, 2012, https://doi.org/10.1080/17476933.2010.551194
- Approximation by polynomials and rational functions in weighted rearrangement invariant spaces vol.346, pp.2, 2008, https://doi.org/10.1016/j.jmaa.2008.05.040