DOI QR코드

DOI QR Code

APPROXIMATION BY INTERPOLATING POLYNOMIALS IN SMIRNOV-ORLICZ CLASS

  • Akgun Ramazan (Department of Mathematics Faculty of Art-Science Balikesir University) ;
  • Israfilov Daniyal M. (Department of Mathematics Faculty of Art-Science Balikesir University)
  • Published : 2006.03.01

Abstract

Let $\Gamma$ be a bounded rotation (BR) curve without cusps in the complex plane $\mathbb{C}$ and let G := int $\Gamma$. We prove that the rate of convergence of the interpolating polynomials based on the zeros of the Faber polynomials $F_n\;for\;\bar G$ to the function of the reflexive Smirnov-Orlicz class $E_M (G)$ is equivalent to the best approximating polynomial rate in $E_M (G)$.

Keywords

References

  1. S. Ya. Alper, Approximation in the mean of analytic functions of class $E^p$ (Russian), In: Investigations on the modern problems of the function theory of a complex variable, Moscow: Gosudarstv. Izdat. Fiz.-Mat. Lit. 1960, 273-286
  2. J. E. Andersson, On the degree of polynomial approximation in $E^p$ (D), J. Approx. Theory 19 (1977), no. 1, 61-68 https://doi.org/10.1016/0021-9045(77)90029-6
  3. J. M. Anderson and J. Clunie, Isomorphisms of the disc algebra and inverse Faber sets, Math. Z. 188 (1985), no. 4, 545-558 https://doi.org/10.1007/BF01161656
  4. A. Cavus and D. M. Israfilov, Approximation by Faber-Laurent rational functions in the mean of functions of the class $L_p(\Gamma)$ with 1 < p <$\infty$, Approx. Theory Appl.(N.S.) 11 (1995), no. 1, 105-118
  5. D. Gaier, Lectures on complex approximation, Birkhauser, Boston, Basel, Stuttgart, 1987
  6. D. Gaier, The Faber operator and its boundedness, J. Approx. Theory 101 (1999), no. 2, 265-277 https://doi.org/10.1006/jath.1999.3400
  7. D. M. Israfilov, Approximation by p-Faber polynomials in the weighted Smirnov class $E^p(G,\omega)$ and the Bieberbach polynomials, Constr. Approx. 17 (2001), no. 3, 335-351 https://doi.org/10.1007/s003650010030
  8. D. M. Israfilov, Approximation by p-Faber-Laurent rational functions in the weighted Lebesgue spaces, Czechoslovak Math. J. 54 (129) (2004), 751-765 https://doi.org/10.1007/s10587-004-6423-7
  9. A. Yu. Karlovich, Algebras of singular integral operators with piecewise continuous coefficients on reflexive Orlicz spaces, Math. Nachr. 179 (1996), 187-222 https://doi.org/10.1002/mana.19961790112
  10. V. Kokilashvili, On analytic functions of Smirnov-Orlicz classes, Studia Math. 31 (1968), 43-59 https://doi.org/10.4064/sm-31-1-43-59
  11. Ch. Pommerenke, Conforme abbildung und Fekete-punkte, Math. Z. 89 (1965), 422-438 https://doi.org/10.1007/BF01112271
  12. M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Marcel Dekker, New York, 1991
  13. X. C. Shen and L. Zhong, On Lagrange interpolation in $E^p$ (D) for 1 < p < $\infty$, (Chinese), Adv. Math. 18 (1989), 342-345
  14. V. I. Smirnov and N. A. Lebedev, Functions of complex variable: Constructive theory, The M. I. T. Press, Cambridge, Mass., 1968
  15. P. K. Suetin, Series of Faber Polynomials, Gordon and Breach, 1. Reading, 1998
  16. L. Zhong and L. Zhu, Convergence of the interpolants based on the roots of Faber polynomials, Acta Math. Hungar. 65 (1994), no. 3, 273-283 https://doi.org/10.1007/BF01875155
  17. L. Y. Zhu, A kind of interpolation nodes, (chinese) Adv. Math., 1994

Cited by

  1. Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent vol.63, pp.1, 2011, https://doi.org/10.1007/s11253-011-0485-0
  2. Approximating Polynomials for Functions of Weighted Smirnov-Orlicz Spaces vol.2012, 2012, https://doi.org/10.1155/2012/982360
  3. On approximation in weighted Smirnov–Orlicz classes vol.57, pp.5, 2012, https://doi.org/10.1080/17476933.2010.551194
  4. Approximation by polynomials and rational functions in weighted rearrangement invariant spaces vol.346, pp.2, 2008, https://doi.org/10.1016/j.jmaa.2008.05.040