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APPROXIMATION BY INTERPOLATING
POLYNOMIALS IN SMIRNOV-ORLICZ CLASS

RAMAZAN AKGUN AND DANIYAL M. ISRAFILOV

ABSTRACT. Let I be a bounded rotation (BR) curve without cusps
in the complex plane C and let G := intI". We prove that the rate
of convergence of the interpolating polynomials based on the zeros
of the Faber polynomials F,, for G to the function of the reflexive
Smirnov-Orlicz class Ey (G) is equivalent to the best approximat-
ing polynomial rate in Eu (G).

1. Introduction and main results

Let T’ be a closed rectifiable Jordan curve in the complex plane C.
The curve I separates the plane into two domains G := intI' and G~ :=
ext. We denote D := {z€ C:|z| <1},T:= 9D and D™ := ext T.

Let w = ¢ (2) be the conformal map of G~ onto D™ normalized by

the conditions
¢ (00) =00, lim ¢(z)

asdo IENA

> 0,

and let 1) := ¢! be its inverse mapping.
When |z| is sufficiently large, ¢ has the Laurent expansion

d
¢(2) =de+do+—+ -

and hence we have

n—1
(6 ()" =dr2" + ) dnpe® + ) dnt.
k=0 k<0
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The polynomial

n—1
F.(z)=d""+ Z dn,kzk
k=0
is called n*" Faber polynomial with respect to G.

Note that for every natural number n, F,, is a polynomial of degree
n. For further information about the Faber polynomials, it can be seen
to monographs [5, Ch. I, Section 6], {14, Ch. II], [15].

By LP(T'), 1 < p < 00, we denote the set of all measurable complex
valued functions f on I' such that | f|? is Lebesgue integrable with respect
to arclength.

Let z = ¢o (w) be the conformal map of D onto G normalized by the
conditions

¢0 (0) =0, ¢6 (0) > Oa
and let 4, be the image of the circle [w| = r, 0 < r < 1, under the
mapping ¢g.

We say that a function f analytic in G, belongs to the Smirnov class
EP(G), 0 < p < o0, if for any r € (0,1) the inequality

/If(z)l”|dz| <e<oo
Yr

holds.

Every function in E? (G), 1 < p < oo, has nontangential bound-
ary values almost everywhere (a. e.) on I' and the boundary function
belongs to LP (T").

For p > 1, E? (G) is a Banach space with respect to the norm

1

P

£ hem@ = sy o= | [ 1£ Pl
r

A continuous and convex function M : [0, 00) — [0, 00) which satisfies
the conditions

M(@©0)=0, M(z)>0 forx>0,

lim =0, lm ——= =o0,
z—0 T x—oo
is called an N-function.

The complementary N-function to M is defined by
N (y) = max (zy — M (z)), y20.
x>0
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We denote by Lps (T') the linear space of Lebesgue measurable func-
tions f : I' — C satisfying the condition

/ Mle|f (2)])ld2] < oo
T

for some a > 0.
The space Ly (I') becomes a Banach space with the norm

1l = sup{ [ @@zl g € L (0 (M) < 1},
I

where N is the complementary N-function to M and

pleiN) = [ Nig@lidal
I

This norm is called Orlicz norm and the Banach space L (T') is
called Orlicz space.
We note that (see, for example, [12, p.51})

Ly @ cL* (D).
An N-function M satisfies the As-condition if

lim su M (2z)
The Orlicz space Lys (I') is reflexive if and only if the N-function M and
its complementary function N both satisfy the Aj-condition [12, p.113].

< o0

Let I'; be the image of the circle {w € C: |w| =7, 0 < r < 1} under
some conformal map of D onto G and let M be an N-function.

DEerFINITION 1. The class of functions which are analytic in G and
satisfy the condition

/ MI|f (2)])|d#] < oo
r,

uniformly in r is called the Smirnov-Orlicz class and denoted by Eus (G).

The Smirnov-Orlicz class is a generalization of the familiar Smirnov
class EP(G). In particular, if M (z) := 2P,1 < p < 0o, then the Smirnov-
Orlicz class Ep (G) determined by M coincides with the Smirnov class
EP(G).
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Since (see [10]) B (G) C E! (G), every function in the class Ep (G)
has the nontangential boundary values a.e. on I' and the boundary value
function belongs to Las (T'). Hence the Eps (G) norm can be defined as:

(1) 1z ) = fllLyry, f€EM(G).

Let v be an oriented rectifiable curve. For z € 7, § > 0 we denote by
s+ (2,0) (respectively s_ (z,4)) the subarc of 7 in the positive (respec-
tively negative) orientation of y with the z starting point and arc length
from 2z to each point less than §.

If v is a smooth curve and

;ig%{ [ ldom-al+ [ ldee-a1} =0

5-(2,6) 5+(2,0)

holds uniformly for z € ~, then it’s said [16] that ~ is of vanishing
rotation (VR).

As follows from this definition, the V R condition is stronger than
smoothness. In [16] L. Zhong and L. Zhu also proved that there exists
a smooth curve which is not of VR.

On the other hand, if the angle of inclination 6 (s) of tangent to -y as
a function of the arclength s along v satisfies the condition

s
/gg(ﬁdt<oo,

0

where w (¢) is the modulus of continuity of 8 (s), then [16] v is VR.

Approximation properties of the Faber and generalized Faber polyno-
mials in the different functional spaces are well known (see for example:
[1]-[2], [4]-[8] and also [5, Chapter 1, pp. 42-57], [15]). In this work we
investigate the convergence property of the interpolating polynomials
based on the zeros of the Faber polynomials in the reflexive Smirnov-
Orlicz class. This problem isn’t new. It was studied by several authors.
In their work [13] under the assumption I' € C'(2,a),0 < a < 1, X. C.
Shen and L. Zhong obtain a series of interpolation nodes in G and show
that interpolating polynomials and the best approximating polynomial
have the same order of convergence in EP (G), 1 < p < co. In [17] con-
sidering I" € C (1, @) and choosing the interpolation nodes as the zeros
of the Faber polynomials L. Y. Zhu obtain similar result.

In the above cited works I" does not admit corners. Many domains
in the complex plane may have corners or cusps. When T is a piecewise
VR curve without cusps, L. Zhong and L. Zhu [16] showed that the
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interpolating polynomials based on the zeros of the Faber polynomials
converge in the Smirnov class E? (G), 1 < p < oo.

In this work we investigate the convergence property of the inter-
polating polynomials based on the zeros of the Faber polynomials in
the reflexive Smirnov-Orlicz class under the assumption that I'' is a BR
curve without cusps.

DEFINITION 2. [6] Let v be a rectifiable Jordan curve with length
L and let z = z(t) be its parametric representation with arclenght t €
[0, L]. If B (t) := arg 2’ (t) can be defined on [0, L] to become a function
of bounded variation, then 7 is called of bounded rotation (v € BR)
and [ |dg (t)] is called total rotation of 7.

If v € BR, then there are two half tangents at each point of +.
The class of bounded rotation curves is sufficiently wide. For example,
a curve which is made up of finitely many convex arcs (corners are
permitted), is bounded rotation [5, p.45]. It is easily seen that every
VR curve and also a piecewise V R curve considered in [16] is BR curve.
Since a BR curve may have cusps or corners, there exists a BR curve
which is not a VR curve (for example, a rectangle in the plane).

In the case that all of the zeros of the n'® Faber polynomial F,, (z)
are in G, we denote by Ly (f, z) the (n — 1) th interpolating polynomial
to f(2) € Eum (G) based on the zeros of the Faber polynomials F,.

For f € Ep (G), we denote by

EM(£,G):= inf {||f = Pnllg,,(c) : Pn is @ polynomial of degree < n}

{
= mf{sup{/l (€)) g ()llds] ; p(g;N)Sl}}

the minimal error of approxnnatlon of f by polynomials of degree at
most n.
The main results of this work are the following.

THEOREM. LetT' be a BR curve without cusps. Then for sufficiently
large natural number n, the roots of the Faber polynomials are in G and
for every f which belongs to reflexive Smirnov-Orlicz class Epf (G),

1F = Ln (f, N yiay S € Bala (£,G)
with a positive constant ¢ depending only on I" and M.

In particular, when M (z) := 2P, 1 < p < 00, we have the following
result.
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COROLLARY. Let I" be a BR curve without cusps. Then for suffi-
ciently large natural number n, the roots of the Faber polynomials are
in G and for every f which belongs to Smirnov class EP (G), 1 < p < 00,

If — Ln (f, ‘)”EP(G) <c-Ena(f, G)pa
where the constant ¢ > 0 depend only on p and G.

When T' is a piecewise VR curve without cups, this corollary was
proved in [16].

We use ¢, ¢, ¢, . .. to denote constants (which may, in general, differ
in different relations) depending only on numbers that are not important
for the question of our interest.

2. Auxiliary results

Let T be a BR curve without cusps. Then (see, for example, Pom-
merenke [11])

1
Fo(z2)== [ [¢(9)]"d; arg (c — 2), zel,
|

where the jump of arg (¢ — z) at ¢ = z equals to the exterior angle a,7.
Hence we have

@) P -BE =1 [ BErdargc-2+ @ -DEN,
\{z}
and

< - .
4) O_rglglgclaz 1] <1

LEMMA 1. [3] Let T' be a BR curve. For any ¢ > 0 and 6 , there
exists a 6 > 0 such that

(3)

o— 0+46

T s (-0 (@)« [ s (e19 -5 () <o
ai_dsfor any n € (6 — 96,6 +9) .differ:m from 0

n+6

[ Ndearg (v (%)~ ()| + [ Jdsarg (0 (c") = v ()]
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where o, 7 is the external angle toT" at 2 = 1 (ew) .

LEMMA 2. IfT is a BR curve, then for every € > 0, there exists a
d > 0 such that

(6) / |ds arg (¢ — 2)| + / |dcarg (s —2)| <e¢, ze€T.
5-(z,0)\{z} s4(z,00\{z}

Proof. We take arbitrary z € I' and fix it. By the change of variable
s =1 (e") we get

o—
|d. arg (¢ — 2)| = / 'dw(eit) arg (1/1 (eit) — (eie))‘
0—6

- [fams(s-5()

s—(2,0)\{z}

and similarly
0+6
|d; arg (¢ — 2)| = / ld¢(eit) arg (TP (eit) 4 (eie))’
s+(2,6)\{z} o+
0+6

= / ‘dt arg (1/1 (eit) — (ew))‘ .
6+
For any € > 0, using (5) we have (6). O

For any § > 0, § € [0,27], we denote by Iy s, the image of the set
{s- (¥ (e%),8) Uss (¢ (¢%) ,6) } under ¢ and let
v (t,6;0) := { weo—(eny © los
0 et e Iys.

The following lemma was proved by L. Zhong and L. Zhu [16] in the
case of a domain bounded by a piecewise V R curve without cusps. When
the boundary of the domain is a BR. curve, the proof goes similarly.

LEMMA 3. For any € > 0, 6 > 0, there exists a natural number k
such that for 6 € [0,27] there exists a trigonometric polynomial Ty (t)
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of t with degree at most k satisfying
27

(7) / v (£,6:8) — Ty (£)] dt < e.
0 .

LEMMA 4. Let T’ be a BR curve without cusps. Then for arbitrary
€ > 0, there exists a positive integer ng such that

(8) |Fr (2) = [6 (2)]"] <oz — 1] + ¢, zel
holds for n > nyg.

Proof. For any € > 0, there exists a § > 0 such that (6) holds. Let
s(z) := {s-(2,0)Us4+(2,0)}, z € I'. Hence by Lemma 3, for given €

and 6 there is a positive integer ng such that (7) is valid. By (3) for
z=1 (ew) we have
Fr(2) = o ()"
1 n
- v [ Jeerdess-2

™

s+(2,0)\{z} s (2,0)\{z}

vo [ B darg -+ (-1
Ms(2)

1

- [+ [ Jeerdess-s
s+(2,0\{z}  s-(z0)\{2}
;1; / ™ d, arg (UJ (eit) — 9 (eie)) ¥ (a5 — 1) oind

eit¢10,6

+

N =

v [ Jeerassc-s

s+(z.0\{z}  s—(z,8\{z}
2

1 : .
+ - / ™ Im [iv (¢, 6;8)] dt + (o — 1) ™.
0
Since €™ is orthogonal to Ty (t) as n > ng, we get

m@-ber-2{ [+ [ Jeerass-»

T

s+(z,0)\{z}  s-(z,0)\{z}
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2w

+ - / ™ Im [iv (t, 0; 8) — iTp (t)] dt + (o, — 1) ™,
0

p—t

and hence

m@-terisH [+ [ b atde -1
s+(z,0\{z}  s-(z,0)\{z}
2T
‘f‘; / lv (t,8;8) — Ty (t)| dt.
0

If z is not a corner of T', then |a, — 1| = 0 and by (6) and (7) our
assumption follows. If z is a corner of I', then 0 < |a, — 1| < 1 and
hence by (6) and (7) we have (8) again. O

p—t

For z € I" and € > 0 let I" (2, €) denote the portion of I" which is inside
the open disk of radius € centered at z,i.e., I (z,e):={t € ' : |t — 2| < €}.
Further, let |T'(z,¢€)| denote the length of I' (z,€). A rectifiable Jordan
curve I is called a Carleson curve if

1
supsup — |I'(2,¢€)| < oo.
e>0 zel' €
We consider the Cauchy-type integral
1 [f(s
) () = 5 [ 1)

S omi ] c—2
r

ds, z€G

and Cauchy’s singular integral of f € L' (T') defined as

.1 f(s)
= lim — LAR NS .
Srf (2) 61rn02 : . ng, zel

T\I'(2,€)
The linear operator Sr : f — Spf is called the Cauchy singular
operator.

LEMMA 5. [9] Let ' be a rectifiable Jordan curve and let Lyt (I') be
a reflexive Orlicz space on T'. Then the singular operator St is bounded
on Ly (1), ie.,

1St sy < Iy, € Lot (D),

for some constant ¢; > 0 if and only if I' is a Carleson curve.
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3. Proof of Theorem

We proof firstly that for sufficiently large n, all zeros of the Faber
polynomials F,, are in G. Let

k:=max|a, - 1|, zeTl.
zel
Then by (4) we have 0 < k < 1. Setting € := l—gﬁ in Lemma 4, for
sufficiently large n we get
14k
(9) [ (2) =0 (@]" < —5— z€l

Since F,, (2) — [¢ (2)]" is analytic on CG := C\G, by the maximum
principle we have

nm o 1+kK
|Fn (2) = [ (2)]"] < —5 z € CG,
and therefore

Bl 2l - 52 5" >0, € CG.

This gives to us the first part of the theorem.
Let P,—; (%) be the (n — 1) th best approximating polynomial to f in
Eym (G) Then

If = Lo (fs Mgy = If = Pro1 = La (f = Pa-1,)l By (0
L+ NLl) IIf = Pr-illgyy(c)

IN

because L, (f,2) is a linear interpolating polynomial operator. Now
we only need to show that, for large values of n, L, (f, 2) is uniformly
bounded in the reflexive Smirnov-Orlicz class Eps (G).

Choosing the interpolation nodes as the zeros of the Faber polyno-
mials we have for 2/ € G

S) de

, ) F,. () I

f(z)—Ln(fvz) = 271 /Fn(C)(C_ZI)
T

F, (Z/) H ] (z/) .

[z
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Taking the limit 2z’ — z € T along all nontangential paths inside of I" we

get by (1)
1f = Lo (s Mpyier = |[Fn () ( B e

< famor} 4]

m ()

LM(I‘)
and later by Lemma 5,
1 = Lo (Fs Mgyyi09 < 1 - {maan (z)l} I
Fu(@) z€l Fn L (T)
F, (2)
<a- {fﬁ%’é (o) } WLy ey -
From (9),
1—-k 34k
5 n(2) < 5 Z€ r
and hence
3+ kK
1f = Ln (f; Mgy S o1 T ||f”LM(r)
Since

Mon (f, sy S Wfllgsee) + I = Lo (fs My 0y

< (1+C1 ?+ ) ”f”LMI‘),

by choosing ¢z := 1 + ¢1 - 3% we obtain that ||L,| < cs and therefore
we conclude by (2)

If = Ln (f, ey S A+ ) If = Paillgy, e

=c3-EpLyi (£, G),
where ¢3 := 1 + c3. O
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