Ore minerals and Genetic Environments from the Baekun Gold-silver Deposit, Republic of Korea

백운 금-은광상에서 산출되는 광석광물과 생성환경

  • Yoo, Bong-Chul (Department of geology and environmental Sciences, Chungnam National University) ;
  • Lee, Hyun-Koo (Department of geology and environmental Sciences, Chungnam National University) ;
  • Kim, Ki-Jung (Department of geology and environmental Sciences, Chungnam National University)
  • 유봉철 (충남대학교 지구환경과학과) ;
  • 이현구 (충남대학교 지구환경과학과) ;
  • 김기중 (충남대학교 지구환경과학과)
  • Published : 2006.02.01

Abstract

Baekun gold-silver deposit is an epithermal quartz vein that is filling the fault zone within Triassic or Jurassic foliated granodiorite. Mineralization is associated with fault-breccia zones and can be divided into two stages. Stage I which can be subdivided early and late depositional stages is main ore mineralization and stage II is barren. Early stage I is associated with wallrock alteration and the formation of sulfides such as arsenopyrite, pyrite, pyrrhotite, sphalerite, marcasite, chalcopyrite, stannite, galena. Late stage I is characterized by Au-Ag mineralization such as electrum, Ag-bearing tetrahedrite, stephanite, boulangerite, pyrargrite, argentite, schirmerite, native silver, Ag-Te-Sn-S system, Ag-Cu-S system, pyrite, chalcopyrite and galena. Fluid inclusion data indicate that homogenization temperatures and salinity of stage I range from $171.6^{\circ}C\;to\;360.8^{\circ}C\;and\;from\;0.5\;to\;10.2\;wt.\%\;eq.$ NaCl, respectively. It suggest that ore forming fluids were cooled and diluted with the mixing of meteoric water. Also, Temperature (early stage I: $236\~>380^{\circ}C,\;$ late stage $I: <197\~272^{\circ}C$) and sulfur fugacity (early stage $I:\;10^{-7.8}$ a atm., late stage I: $10^{-14.2}\~10^{-l6}atm$.) deduced mineral assemblages from stage 1 decrease with paragenetic sequence. Sulfur ($2.4\~6.1\%_{\circ}$(early stage $I=3.4\~5.3\%_{\circ},\;late\;stage\;I=2.4\~6.1\%_{\circ}$)), oxygen ($4.5\~8.8\%_{\circ}$(quartz: early stage $I=6.3\~8.8\%_{\circ}$, late stage $I=4.5\~5.6\%_{\circ}$)), hydrogen ($-96\~-70\%_{\circ}$ (quartz: early stage $I=-96\~-70\%_{\circ},\;late\;stage\;f=-78\~-74\%_{\circ},\;calcite:\;late\;stage\;I=-87\~-76\%_{\circ}$)) and carbon ($-6.8\~-4.6\%_{\circ}$ (calcite: late stage I)) isotope compositions indicated that hydrothermal fluids may be magmaticorigin with some degree of mixing of another meteoric water for paragenetic time.

백운 금-은광상은 트라이아스기 또는 쥐라기의 엽리상화강섬록암내에 발달된 단층대를 충진한 천열수성 석영맥광상이다. 이 광상의 광화작용은 단층-각력대에 수반되며 2시기로 구분된다. I시기는 다시 조기와 말기로 구분되며 주된 광화시기이다. II시기는 광화작용이 관찰되지 않는다. I시기 소기는 모암변질과 유비철석, 황철석, 자류철석, 섬아연석, 백철석, 황동석, 황석석 및 방연석이 관찰된다. I시기 말기는 금-은광물정출시기로 일렉트럼, 함은사면동석, 스테파나이트, 보울란제라이트, 농홍은석, 휘은석 , 시르메라이트, 자연은, Ag-Te -Sn-S계 광물, Ag-Cu-S계 광물, 황철석, 황동석 및 방연석이 관찰된다. 유체포유물 자료에 의하면, 광화 I시기의 균일화온도와 염농도는 각각 $171.6\~360.8^{\circ}C,\;0.5\~10.2\;wt.\%$로써 광화유체가 천수의 혼입에 의한 냉각과 희석이 있었음을 지시한다. 또한, 광화 I시기에 관찰되는 광물공생군으로부터 구한 생성온도(조기: $236\~>380^{\circ}C$, 말기: $<197\~272^{\circ}C$)와 황분압(조기: $>10^{-7.8}\;atm.,$ 말기: $10^{-14.2\~10^{-16}\;atm.$)이 광화작용이 진행됨에 따라 감소되어 진다. 황($2.4\~6.1\%_{\circ}$(조기=$3.4\~5.3\%_{\circ}$, 말기=$2.4\~6.1\%_{\circ}$)), 산소($4.5\~8.8\%_{\circ}$(석영: 조기=$6.3\~8.8\%_{\circ}$, 말기=$4.5\~5.6\%_{\circ}$)), 수소($-96\~-70\%_{\circ}$(석영: 조기=$-96\~-70\%_{\circ}$, 말기=$-78\~-74\%_{\circ}$, 방해석: 말기=$-87\~-76\%_{\circ}$)) 및 탄소($-6.8\~-4.6\%_{\circ}$(방해석: 말기)) 동위원소 값의 자료로 볼 때, 이 광상의 광화유체는 마그마 기원의 유체가 주종을 이룬 것으로 보이며 광화작용이 진행됨에 따라 기원이 다른 천수의 혼입이 작용한 것으로 해석할 수 있다.

Keywords

References

  1. 김규봉, 최위찬, 황재하, 김정환 (1984) 오수도폭지질보고서. 한국동력자원연구소, 30p
  2. 김규한, 中井信之(1988) 남한의 지하수 및 강수의 안정동 위원소조성. 지질학회지, 24권, p. 37-46
  3. 김용준, 이창선 (1988) 장수-운봉지역에 분포하는 화성암류와 화성활동에 대한 연구. 대한지질학회지 , 24권, p. 111-131
  4. 대한광업진흥공사 (1982) 한국의 광상, 제 5호
  5. 박희인, 우영균, 이찬희 (1987) 둔전금광산 남광상의 광석과 유체포유물. 광산지질, 20권, p. 107-118
  6. 이창신 (1989) 진한-장수지역에 분포한 화강암류에 대한 암석지구화학과 금은광상의 성인에 관한 연구. 박사학 위논문, 148p
  7. 이창신, 박영석, 신방섭 (1988) 백운지역 금은광상의 광화 작용에 관한 연구. 대한광산학회지, 25권 , p. 10-20
  8. 전서령, 정재일, 김대현 (2002) 백운폐광산의 방치된 폐석으로 인한 주변 수계의 환경적 영향. 자원환경지질, 35 권, p. 325-337
  9. Bodnar, R. J. (1983) A method of calculating fluid inclu sion volumes based on vapor bubble diameters and PV- T-X properties of inclusion fluids. Econ. Geol. V. 78, p. 535-542 https://doi.org/10.2113/gsecongeo.78.3.535
  10. Bodnar R. J. and Vityk, M. O. (1994) Interpretation of microthermometric data for $H_O$-NaCI fluid inclusions: in De Vivo, B. and Frezzotti, M.L. eds., Fluid inclusions in minerals: Method and applications: Short Course International Mineralogical Assoc., p. 117-130
  11. Craig, J. R. and Barton, P. B. (1973) Thermochemical approximations for sulfosalts. Econ. Geol, v. 68, p. 493-506 https://doi.org/10.2113/gsecongeo.68.4.493
  12. Friedman, I. and O'Neil,J. R. (1977) Compilation of stable isotope fractionation factors of geochemical interest. in Fleisher, M., ed., Data of geochemistry, Sixth Edition: U. S. Geol. Survey Prof. paper 440-KK, p. KK1-KK12
  13. Hass, J. L. (1971) The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Econ. Geol., v. 66, p. 940-946 https://doi.org/10.2113/gsecongeo.66.6.940
  14. Keighin, C. W. and Honea, R. M. (1969) The system AgSb- S from $600^{\circ}C$-to $200^{\circ}C$. Mineralium Deposita, v. 4, p. 157-171
  15. Kim, K. R. and Nakai, N. (1981) A study on hydrogen, oxygen and sulfur isotopic ratios of the hot water in South Korea. Geochemistry, V. 15, p. 6-16
  16. Kretschmar, U. and Scott, S. D. (1976) Phase relation involving arsenopyrite in the system Fe-As-S and their application. Canadian Mineralogist, V. 14, p. 364386
  17. Matsuhisa, Y, Goldsmith, R. and Clayton, R. N. (1979) Oxygen isotope fractionation in the system quartzalbite- anorthite-water. Geochim. Cosmochim. Acta, v. 43, p. 1131-1140 https://doi.org/10.1016/0016-7037(79)90099-1
  18. Nakamura, Y. and Shima, H. (1982) Fe and Zn partitioning between sphalerite and stannite(abstr:). Joint Meeting of Soc. Mining Geol. Japan, Assoc. Miner. Petro Econ. Geol. and Miner. Soc. Japan, A-8
  19. Nekrasov, I. J. Sorokin, V. I. and Osadchi, E. G. (1979) Fe and Zn partitioning between stannite and sphalerite and its application in geothermometry. In: Origin and distribution of the elements. L.R. Ahrens, Ed., phys. chern. Earth, V. 34, p. 739-749
  20. Ohmoto, R. and Rye, R. O. (1979) Isotopes of sulfur and carbon. R.L. Barnes. Geochemistry of hydrothermal ore deposits. 2nd ed, Wiley-Interscience. New York, p. 509-567
  21. Shimizu, M. and Shikazono, N. (1985) Iron and zinc partitioning between coexisting stannite and sphalerite: A possible indicator of temperature and sulfur fugacity. Mineralium Deposita, V. 20, p. 314-320
  22. So, C. S. Chi, S. J. Yu, J. S. and Shelton, K. L. (1987) The Jeonui gold-silver mine, Republic of Korea: A geochemical study. Mining Geology, V. 37, p. 313-322
  23. So, C. S. and Shelton, K. L. (1987a) Stable isotope and fluid inclusion studies of gold and silver-bearing hydrothermal vein deposits, Cheonan-CheongyangNonsan mining district, Republic of Korea: Cheonan area. Econ. Geol., V. 82, p. 987-1000 https://doi.org/10.2113/gsecongeo.82.4.987
  24. So, C. S. and Shelton, K. L. (1987b) Fluid inclusion and stable isotope studies of gold-silver-bearing hydro thermal vein deposits, Yeoju mining district, Republic of Korea. Econ. Geol., V. 82, p. 1309-1318 https://doi.org/10.2113/gsecongeo.82.5.1309