Cloning and Characterization of a Gene Encoding $\gamma-Butyrolactone$ Autoregulator Receptor from Saccharopolyspora erythraea

  • LEE YONG-JIK (International Center for Biotechnology, Osaka University) ;
  • YEO SOO-HWAN (The Center for Traditional Microorganism Resources, Keimyung University) ;
  • LEE IN SEON (The Center for Traditional Microorganism Resources, Keimyung University) ;
  • LEE SAM-PIN (The Center for Traditional Microorganism Resources, Keimyung University) ;
  • KITANI SHIGERU (International Center for Biotechnology, Osaka University) ;
  • NIHIRA TAKUYA (International Center for Biotechnology, Osaka University) ;
  • KIM HYUN SOO (The Center for Traditional Microorganism Resources, Keimyung University, Department of Microbiology, Keimyung University)
  • Published : 2006.01.01

Abstract

A gene encoding a $\gamma-butyrolactone$ autoregulator receptor was cloned from Saccharopolyspora erythraea, and the biochemical characteristics, including the autoregulator specificity, were determined with the purified recombinant protein. Using primers designed for the conserved amino acid sequence of Streptomyces $\gamma-butyrolactone$ autoregulator receptors, a 120 bp S. erythraea DNA fragment was obtained by PCR. Southern and colony hybridization with the 120 bp fragment as a probe allowed to select a genomic clone of S. erythraea, pESG, harboring a 3.2 kb SacI fragment. Nucleotide sequencing analysis revealed a 615 bp open reading frame (ORF), showing moderate homology (identity, $31-34\%$; similarity, $45-47\%$) with the $\gamma-butyrolactone$ autoregulator receptors from Streptomyces sp., and this ORF was named seaR (Saccharopolyspora erythraea autoregulator receptor). The seaR/pET-3d plasmid was constructed to overexpress the recombinant SeaR protein (rSeaR) in Escherichia coli, and the rSeaR protein was purified to homogeneity by DEAE-Sephacel column chromatography, followed by DEAE-ion-exchange HPLC. The molecular mass of the purified rSeaR protein was 52 kDa by HPLC gel-filtration chromatography and 27 kDa by SDS-polyacrylamide gel electrophoresis, indicating that the rSeaR protein is present as a dimer. A binding assay with tritium-labeled autoregulators revealed that rSeaR has clear binding activity with a VB-C-type autoregulator as the most effective ligand, demonstrating for the first time that the erythromycin producer S. erythraea possesses a gene for the $\gamma-butyrolactone$autoregulator receptor.

Keywords

References

  1. Bibb, M. J., P. R. Findlay, and M. W. Johnson. 1984. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequence. Gene 30: 157- 166 https://doi.org/10.1016/0378-1119(84)90116-1
  2. Christopher, C., S. Frykmann, S. Ou, L. Cadapan, S. Zavala, E. Woo, T. Leaf, J. Carney, M. Burlingame, S. Patel, G. Ashley, and P. Licari. 2002. Saccharopolyspora erythraea-catalyzed bioconversion of 6-deoxyerythronolide B analogs for production of novel erythromycin. J. Biotechnol. 92: 217-228 https://doi.org/10.1016/S0168-1656(01)00372-8
  3. Grafe, U., W. Schade, I. Eritt, W. F. Flecks, and L. Radics. 1982. A new inducer of anthracycline biosynthesis from Streptomyces viridochromogenes. J. Antibiot. 35: 1722- 1723 https://doi.org/10.7164/antibiotics.35.1722
  4. Grafe, U., G. Reinhardt, W. Schade, I. Eritt, W. F. Fleck, and L. Radics. 1983. Interspecific inducers of cytodifferentiation and anthracycline biosynthesis from Streptomyces bikiniensis and S. cyaneofuscatus. Biotechnol. Lett. 5: 591-596 https://doi.org/10.1007/BF00130838
  5. Grant, S. G., J. Jessee, F. R. Bloom, and D. Hanahan. 1990. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc. Natl. Acad. Sci. USA 87: 4645-4649
  6. Hara, O. and T. Beppu. 1982. Mutants blocked in streptomycin production in Streptomyces griseus. J. Antibiot. 32: 349-358
  7. Hashimoto, K., T. Nihira, and Y. Yamada. 1992. Distribution of virginiae butanolides and IM-2 in the genus Streptomyces. J. Ferment. Bioeng. 73: 61-65 https://doi.org/10.1016/0922-338X(92)90234-L
  8. Hashimoto, K., T. Nihira, S. Sakuda, and Y. Yamada. 1992. IM-2, a butyrolactone autoregulator, induces production of several nucleoside antibiotics in Streptomyces sp. FRI-5. J. Ferment. Bioeng. 73: 449-455 https://doi.org/10.1016/0922-338X(92)90136-I
  9. Jo, Y. Y., S. H. Kim, Y. Y. Yang, C. M. Kang, J. K. Sohng, and J. W. Suh. 2003. Functional analysis of spectinomycin biosynthetic genes from Streptomyces spectabilis ATCC 27741. J. Microbiol. Biotechnol. 13: 906-911
  10. Khokhlov, A. S. 1980. Problems of studies of specific cell autoregulators (on the example of substances produced by some actinomycetes), pp. 201-210. In: Ananchenko, S. N. (ed.), Frontiers of Bioorganic Chemistry and Molecular Biology. Pergamon Press, Oxford
  11. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, England
  12. Kim, C. Y., H. J. Park, and E. S. Kim. 2003. Heterologous expression of hybrid type II polyketide synthase system in Streptomyces species. J. Microbiol. Biotechnol. 13: 819- 822
  13. Kim, C. Y., H. J. Park, Y. J. Yoon, H. Y. Kang, and E. S. Kim. 2004. Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally-integrated antibiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14: 1089-1092
  14. Kim, H. S., T. Nihira, H. Tada, M. Yanagimoto, and Y. Yamada. 1989. Identification of binding protein of virginiae butanolide C, autoregulator in virginiamycin production, from Streptomyces virginiae. J. Antibiot. 42: 769-778 https://doi.org/10.7164/antibiotics.42.769
  15. Kim, H. S., T. Nihira, H. Tada, and Y. Yamada. 1990. Purification and characterization of virginiae butanolide C-binding protein, a possible pleiotropic signal-transducer in Streptomyces virginiae. J. Antibiot. 43: 692-706 https://doi.org/10.7164/antibiotics.43.692
  16. Kitani, S., Y. Yamada, and T. Nihira. 2001. Gene replacement analysis of the butyrolactone autoregulator receptor (FarA) reveals that FarA acts as a novel regulator in secondary metabolism of Streptomyces lavendulae FRI-5. J. Bacteriol. 183: 4357-4363 https://doi.org/10.1128/JB.183.14.4357-4363.2001
  17. Kleiner, E. M., S. A. Pliner, V. S. Soifer, V. V. Onoprienko, T. A. Balashova, B. V. Rosynov, and A. S. Khokhlov. 1976. The structure of A-factor, a bioregulator from Streptomyces griseus. Bioorg. Khim. 2: 1142-1147
  18. Kondo, K., Y. Higuchi, S. Sakuda, T. Nihira, and Y. Yamada. 1989. New virginiae butanolides from Streptomyces virginiae. J. Antibiot. 42: 1837-1876
  19. Miyake, K., S. Horinouchi, M. Yoshida, N. Chiba, K. Mori, N. Nogawa, N. Morikawa, and T. Beppu. 1989. Detection and properties of A-factor-binding protein from Streptomyces griseus. J. Bacteriol. 171: 4298-4302 https://doi.org/10.1128/jb.171.8.4298-4302.1989
  20. Mizuno, K., S. Sakuda, T. Nihira, and Y. Yamada. 1994. Enzymatic resolution of 2-acyl-3-hydroxymethyl-4-butanolide and preparation of optically active IM-2, the autoregulator from Streptomyces sp. FRI-5. Tetrahedron 50: 10849- 10858 https://doi.org/10.1016/S0040-4020(01)85697-0
  21. Mori, K. 1983. Revision of the absolute configuration of A-factor. Tetrahedron 39: 3107-3109 https://doi.org/10.1016/S0040-4020(01)91552-2
  22. Okamoto, S., K. Nakamura, T. Nihira, and Y. Yamada. 1995. Virginiae butanolide binding protein from Streptomyces virginiae. J. Biol. Chem. 270: 12319-12326 https://doi.org/10.1074/jbc.270.20.12319
  23. Onaka, H., N. Ando, T. Nihira, Y. Yamada, T. Beppu, and S. Horinouchi. 1995. Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J. Bacteriol. 177: 6083-6092 https://doi.org/10.1128/jb.177.21.6083-6092.1995
  24. Rao, R. N., M. A. Richardson, and S. Kuhstoss. 1987. Cosmid shuttle vectors for cloning and analysis of Streptomyces DNA. Methods Enzymol. 153: 166-198 https://doi.org/10.1016/0076-6879(87)53053-1
  25. Ruengjitchatchawalya, M., T. Nihira, and Y. Yamada. 1995. Purification and characterization of the IM-2-binding protein from Streptomyces sp. strain FRI-5. J. Bacteriol. 177: 551- 557 https://doi.org/10.1128/jb.177.3.551-557.1995
  26. Ryu, Y. G., W. Jin, J. Y. Kim, J. Y. Kim, S. H. Lee, and K. Y. Lee. 2004. Stringent factor regulates antibiotics production and morphological differentiation of Streptomyces clavuligerus. J. Microbiol. Biotechnol. 14: 1170-1175
  27. Sakuda, S. and Y. Yamada. 1991. Stereochemistry of butyrolactone autoregulators from Streptomyces. Tetrahedron Lett. 32: 1817-1820 https://doi.org/10.1016/S0040-4039(00)74338-3
  28. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
  29. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467
  30. Sato, K., T. Nihira, S. Sakuda, M. Yamagimoto, and Y. Yamada. 1989. Isolation and structure of a new butyrolactone autoregulator from Streptomyces sp. FRI-5. J. Ferment. Bioeng. 68: 170-173 https://doi.org/10.1016/0922-338X(89)90131-1
  31. Studier, F. W. and B. A. Moffat. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189: 113 https://doi.org/10.1016/0022-2836(86)90385-2
  32. Studier, F. W., A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185: 60-89 https://doi.org/10.1016/0076-6879(90)85008-C
  33. Takano, E., T. Nihira, Y. Hara, J. J. Jones, C. J. L. Gershater, Y. Yamada, and M. Bibb. 2000. Purification and structural determination of SCB1, a ${\gamma}$-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J. Biol. Chem. 275: 11010-11016 https://doi.org/10.1074/jbc.275.15.11010
  34. Takano, E., R. Chakraburtty, T. Nihira, Y. Yamada, and M. Bibb. 2001. A complex role for the ${\gamma}$-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 41: 1015-1028 https://doi.org/10.1046/j.1365-2958.2001.02562.x
  35. Waki, M., T. Nihira, and Y. Yamada. 1997. Cloning and characterization of the gene (farA) encoding the receptor for an extracellular regulatory factor (IM-2) from Streptomyces sp. strain FRI-5. J. Bacteriol. 179: 5131-5137 https://doi.org/10.1128/jb.179.16.5131-5137.1997
  36. Yamada, Y., K. Sugamura, K. Kondo, M. Yanagimoto, and H. Okada. 1987. The structure of inducing factors for virginiamycin production in Streptomyces virginiae. J. Antibiot. 40: 496-504 https://doi.org/10.7164/antibiotics.40.496
  37. Yanagimoto, M. and G. Terui. 1971. Physiological studies on staphylomycin production. (II) Formation of a substance effective in inducing staphylomycin production. J. Ferment. Technol. 49: 611-618
  38. Yanagimoto, M. and T. Enatsu. 1983. Regulation of a blue pigment production by Q-nonalactone in Streptomyces sp. J. Ferment. Technol. 61: 545-550
  39. Wright, F. and M. J. Bibb. 1992. Codon usage in the G+C-rich Streptomyces genome. Gene 113: 55-65 https://doi.org/10.1016/0378-1119(92)90669-G