Incapability of Utilizing Galactose by pgs1 Mutation Occurred on the Galactose Incorporation Step in Saccharomyces cerevisiae

  • Rho, Min-Suk (Research Institute of Pharmaceutical Sciences, Seoul National University, Medicinal Resources Research Institute, Wonkwang University) ;
  • Su, Xuefeng (Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School) ;
  • Lee, Yoon-Shik (Department of Endocrinology, University of Pennsylvania Medical School) ;
  • Kim, Woo-Ho (Cancer Research Institute, Seoul National University College of Medicine) ;
  • Dowhan, William (Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School)
  • Published : 2006.01.01

Abstract

A Saccharomyces cerevisiae pgs1 nulI mutant, which is deficient with phosphatidyl glycerol (PG) and cardiolipin (CL) biosynthesis, grows well on most fermentable carbon sources, but fails to grow on non-fermentable carbon sources such as glycerol, ethanol, and lactate. This mutant also cannot grow on galactose medium as the sole carbon source. We found that the incorporation of $[^{14}C]-galactose$, which is the first step of the galactose metabolic pathway (Leloir pathway), into the pgs 1 null mutant cell was extremely repressed. Exogenously expressed PGS1 (YCpPGS1) under indigenous promoter could completely restore the pgs1 growth defect on non-fermentable carbon sources, and dramatically recovered $[^{14}C]-galactose$ incorporation into the pgs1 mutant cell. However, PGS1 expression under the GALl promoter $(YEpP_{GAL1}-PGS1myc)$ could not complement pgs1 mutation, and the GAL2-lacZ fusion gene $(YEpP_{GAL2}-lacZ)$ also did not exhibit its $\beta-galactosidase$ activity in the pgs1 mutant. In wild-type yeast, antimycin $A(1\;{\mu}g/ml)$, which inhibits mitochondrial complex III, severely repressed not only the expression of the GAL2-lacZ fusion gene, but also uptake of $[^{14}C]-galactose$. However, exogenously expressed PGS1 partially relieved these inhibitory effects of antimycin A in both the pgs1 mutant and wild-type yeast, although it could not basically restore the growth defect on galactose by antimycin A. These results suggest that the PGSI gene product has an important role in utilization of galactose by Gal genes, and that intact mitochondrial function with PGS1 should be required for galactose incorporation into the Leloir pathway. The PGS1 gene might provide a clue to resolve the historic issue about the incapability of galactose with deteriorated mitochondrial function.

Keywords

References

  1. Arbuzova, S., T. Hutchin, and H. Cuckle. 2002. Mitochondrial dysfunction and Down's syndrome. Bioessays 24: 681-684 https://doi.org/10.1002/bies.10138
  2. Babiychuk, E., F. Muller, H. Eubel, H. P. Braun, M. Frentzen, and S. Kushnir. 2003. Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J. 33: 899- 909 https://doi.org/10.1046/j.1365-313X.2003.01680.x
  3. Bajwa, W., T. E. Torchia, and J. E. Hopper. 1988. Yeast regulatory gene GAL3: Carbon regulation; UAS Gal elements in common with GAL1, GAL2, GAL7, GAL10, GAL80, and MEL1; encoded protein strikingly similar to yeast and Escherichia coli galactokinases. Mol. Cell. Biol. 8: 3439- 3447 https://doi.org/10.1128/MCB.8.8.3439
  4. Bhat, P. J. and J. E. Hopper. 1991. The mechanism of inducer formation in gal3 mutants of the yeast galactose system is independent of normal galactose metabolism and mitochondrial respiratory function. Genetics 128: 233-239
  5. Bhat, P. J., D. Oh, and J. E. Hopper. 1990. Analysis of the GAL3 signal transduction pathway activating GAL4 protein-dependent transcription in Saccharomyces cerevisiae. Genetics 125: 281-291
  6. Birner, R., R. Nebauer, R. Schneiter, and G. Daum. 2003. Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine biosynthetic machinery with the prohibitin complex of Saccharomyces cerevisiae. Mol. Biol. Cell 14: 370-383 https://doi.org/10.1091/mbc.E02-05-0263
  7. Chang, S. C., P. N. Heacock, C. J. Clancey, and W. Dowhan. 1998. The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae. J. Biol. Chem. 273: 9829-9836 https://doi.org/10.1074/jbc.273.16.9829
  8. Chelstowska, A. and R. A. Butow. 1995. RTG genes in yeast that function in communication between mitochondria and the nucleus are also required for expression of genes encoding peroxisomal proteins. J. Biol. Chem. 270: 18141- 18146 https://doi.org/10.1074/jbc.270.30.18141
  9. Crompton, M. 1999. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341(Pt 2): 233- 249 https://doi.org/10.1042/0264-6021:3410233
  10. Daum, G. and J. E. Vance. 1997. Import of lipids into mitochondria. Prog. Lipid Res. 36: 103-130 https://doi.org/10.1016/S0163-7827(97)00006-4
  11. Donnini, C., T. Lodi, I. Ferrero, A. Algeri, and P. P. Puglisi. 1992. Allelism of IMP1 and GAL2 genes of Saccharomyces cerevisiae. J. Bacteriol. 174: 3411-3415 https://doi.org/10.1128/jb.174.10.3411-3415.1992
  12. Donnini, C., T. Lodi, I. Ferrero, and P. P. Puglisi. 1992. IMP2, a nuclear gene controlling the mitochondrial dependence of galactose, maltose and raffinose utilization in Saccharomyces cerevisiae. Yeast 8: 83-93 https://doi.org/10.1002/yea.320080203
  13. Evans, I. H., E. S. Diala, A. Earl, and D. Wilkie. 1980. Mitochondrial control of cell surface characteristics in Saccharomyces cerevisiae. Biochim. Biophys. Acta 602: 201-206 https://doi.org/10.1016/0005-2736(80)90302-8
  14. Frey, P. A. 1996. The Leloir pathway: A mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J. 10: 461-470 https://doi.org/10.1096/fasebj.10.4.8647345
  15. Garcia Fernandez, M., L. Troiano, L. Moretti, M. Nasi, M. Pinti, S. Salvioli, J. Dobrucki, and A. Cossarizza. 2002. Early changes in intramitochondrial cardiolipin distribution during apoptosis. Cell Growth Differ. 13: 449-455
  16. Gaynor, P. M., S. Hubbell, A. J. Schmidt, R. A. Lina, S. A. Minskoff, and M. L. Greenberg. 1991. Regulation of phosphatidylglycerolphosphate synthase in Saccharomyces cerevisiae by factors affecting mitochondrial development. J. Bacteriol. 173: 6124-6131 https://doi.org/10.1128/jb.173.19.6124-6131.1991
  17. Gbelska, Y., M. Obernauerova, and J. Subik. 1999. Growth of eukaryotic cells in relation to the structure of mitochondrial membranes and mitochondrial genome. Folia Microbiol. (Praha) 44: 697-702 https://doi.org/10.1007/BF02825665
  18. Goffrini, P., A. A. Algeri, C. Donnini, M. Wesolowski-Louvel, and I. Ferrero. 1989. RAG1 and RAG2: Nuclear genes involved in the dependence/independence on mitochondrial respiratory function for growth on sugars. Yeast 5: 99-106 https://doi.org/10.1002/yea.320050205
  19. Gottlieb, E., S. M. Armour, and C. B. Thompson. 2002. Mitochondrial respiratory control is lost during growth factor deprivation. Proc. Natl. Acad. Sci. USA 99: 12801- 12806
  20. Gottlieb, R. A. 2000. Mitochondria: Execution central. FEBS Lett. 482: 6-12 https://doi.org/10.1016/S0014-5793(00)02010-X
  21. Gottlieb, R. A. 2000. Role of mitochondria in apoptosis. Crit. Rev. Eukaryot. Gene Expr. 10: 231-239
  22. Grivell, L. A. 1995. Nucleo-mitochondrial interactions in mitochondrial gene expression. Crit. Rev. Biochem. Mol. Biol. 30: 121-164 https://doi.org/10.3109/10409239509085141
  23. Heacock, P. N. and W. Dowhan. 1987. Construction of a lethal mutation in the synthesis of the major acidic phospholipids of Escherichia coli. J. Biol. Chem. 262: 13044-13049
  24. Janitor, M., M. Obernauerova, S. D. Kohlwein, and J. Subik. 1996. The pel1 mutant of Saccharomyces cerevisiae is deficient in cardiolipin and does not survive the disruption of the CHO1 gene encoding phosphatidylserine synthase. FEMS Microbiol. Lett. 140: 43-47
  25. Jiang, F., M. T. Ryan, M. Schlame, M. Zhao, Z. Gu, M. Klingenberg, N. Pfanner, and M. L. Greenberg. 2000. Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J. Biol. Chem. 275: 22387-22394 https://doi.org/10.1074/jbc.M909868199
  26. Kawasaki, K., O. Kuge, S. C. Chang, P. N. Heacock, M. Rho, K. Suzuki, M. Nishijima, and W. Dowhan. 1999. Isolation of a Chinese hamster ovary (CHO) cDNA encoding phosphatidylglycerophosphate (PGP) synthase, expression of which corrects the mitochondrial abnormalities of a PGP synthase-defective mutant of CHO-K1 cells. J. Biol. Chem. 274: 1828-1834 https://doi.org/10.1074/jbc.274.3.1828
  27. Kirkinezos, I. G. and C. T. Moraes. 2001. Reactive oxygen species and mitochondrial diseases. Semin. Cell Dev. Biol. 12: 449-457 https://doi.org/10.1006/scdb.2001.0282
  28. Kuo, S. C. and V. P. Cirillo. 1970. Galactose transport in Saccharomyces cerevisiae. 3. Characteristics of galactose uptake in transferaseless cells: Evidence against transport-associated phosphorylation. J. Bacteriol. 103: 679-685
  29. Lee, Y. J., K. H. Cho, and Y. J. Kim. 2003. The membrane-bound NADH:ubiquinone oxidoreductase in the aerobic respiratory chain of marine bacterium Pseudmonas nautical. J. Microbiol. Biotechnol. 13: 225-229
  30. Lodi, T., P. Goffrini, I. Ferrero, and C. Donnini. 1995. IMP2, a gene involved in the expression of glucose-repressible genes in Saccharomyces cerevisiae. Microbiology 141(Pt 9): 2201-2209 https://doi.org/10.1099/13500872-141-9-2201
  31. Lussier, M., A. M. White, J. Sheraton, T. di Paolo, J. Treadwell, S. B. Southard, C. I. Horenstein, J. Chen-Weiner, A. F. Ram, J. C. Kapteyn, T. W. Roemer, D. H. Vo, D. C. Bondoc, J. Hall, W. W. Zhong, A. M. Sdicu, J. Davies, F. M. Klis, P. W. Robbins, and H. Bussey. 1997. Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147: 435-450
  32. Mahler, H. R. and D. Wilkie. 1978. Mitochondrial control of sugar utilization in Saccharomyces cerevisiae. Plasmid 1: 125-133 https://doi.org/10.1016/0147-619X(78)90033-1
  33. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
  34. Min-Seok, R., Y. Kawamata, H. Nakamura, A. Ohta, and M. Takagi. 1996. Isolation and characterization of ECT1 gene encoding CTP: Phosphoethanolamine cytidylyltransferase of Saccharomyces cerevisiae. J. Biochem. (Tokyo) 120: 1040- 1047 https://doi.org/10.1093/oxfordjournals.jbchem.a021497
  35. Ostergaard, S., L. Olsson, and J. Nielsen. 2001. In vivo dynamics of galactose metabolism in Saccharomyces cerevisiae: Metabolic fluxes and metabolite levels. Biotechnol. Bioeng. 73: 412-425 https://doi.org/10.1002/bit.1075
  36. Ostrander, D. B., G. C. Sparagna, A. A. Amoscato, J. B. McMillin, and W. Dowhan. 2001. Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J. Biol. Chem. 276: 38061-38067
  37. Ostrander, D. B., M. Zhang, E. Mileykovskaya, M. Rho, and W. Dowhan. 2001. Lack of mitochondrial anionic phospholipids causes an inhibition of translation of protein components of the electron transport chain. A yeast genetic model system for the study of anionic phospholipid function in mitochondria. J. Biol. Chem. 276: 25262-25272 https://doi.org/10.1074/jbc.M103689200
  38. Petrosillo, G., F. M. Ruggiero, M. Pistolese, and G. Paradies. 2001. Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis. FEBS Lett. 509: 435-438 https://doi.org/10.1016/S0014-5793(01)03206-9
  39. Piccotti, L., C. Marchetti, G. Migliorati, R. Roberti, and L. Corazzi. 2002. Exogenous phospholipids specifically affect transmembrane potential of brain mitochondria and cytochrome c release. J. Biol. Chem. 277: 12075-12081 https://doi.org/10.1074/jbc.M200029200
  40. Sambrook, Russell. 1987. Molecular Cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A
  41. Shin, I. H., S. J. Jeon, H. S. Park, and D. H. Park. 2004. Catalytic oxidoreduction of pyruvate/lactate and acetaldehyde/ ethanol coupled to electrochemical oxidoreduction of $NAD^{+}$/ NADH. J. Microbiol. Biotechnol. 14: 540-546
  42. Sil, A. K., S. Alam, P. Xin, L. Ma, M. Morgan, C. M. Lebo, M. P. Woods, and J. E. Hopper. 1999. The Gal3p-Gal80p- Gal4p transcription switch of yeast: Gal3p destabilizes the Gal80p-Gal4p complex in response to galactose and ATP. Mol. Cell. Biol. 19: 7828-7840 https://doi.org/10.1128/MCB.19.11.7828
  43. Tiefenthaler, M., A. Amberger, N. Bacher, B. L. Hartmann, R. Margreiter, R. Kofler, and G. Konwalinka. 2001. Increased lactate production follows loss of mitochondrial membrane potential during apoptosis of human leukaemia cells. Br. J. Haematol. 114: 574-580 https://doi.org/10.1046/j.1365-2141.2001.02988.x
  44. Ulery, T. L., D. A. Mangus, and J. A. Jaehning. 1991. The yeast IMP1 gene is allelic to GAL2. Mol. Gen. Genet. 230: 129-135 https://doi.org/10.1007/BF00290660
  45. Villani, G. and G. Attardi. 2000. In vivo control of respiration by cytochrome c oxidase in human cells. Free Radic. Biol. Med. 29: 202-210 https://doi.org/10.1016/S0891-5849(00)00303-8
  46. Xia, W. and W. Dowhan. 1995. Phosphatidylinositol cannot substitute for phosphatidylglycerol in supporting cell growth of Escherichia coli. J. Bacteriol. 177: 2926-2928 https://doi.org/10.1128/jb.177.10.2926-2928.1995
  47. Zhang, M., X. Su, E. Mileykovskaya, A. A. Amoscato, and W. Dowhan. 2003. Cardiolipin is not required to maintain mitochondrial DNA stability or cell viability for Saccharomyces cerevisiae grown at elevated temperatures. J. Biol. Chem. 278: 35204-35210 https://doi.org/10.1074/jbc.M306729200