다양한 케이블 요소를 이용한 강사장교의 극한강도 평가

Evaluation of Limit Strength for Steel Cable-Stayed Bridgesusing Various Cable Elements

  • 투고 : 2006.01.17
  • 발행 : 2006.09.30

초록

본 논문에서는 다양한 형태의 케이블 요소들의 거동이 강사장교의 극한강도에 미치는 영향을 검토하였다. 연화소성힌지 모델을 사용한 극한강도 평가 시 보-기둥 부재의 기하학적 비선형은 안정함수를 사용하여 고려하였고 재료적 비선형성을 반영하기 위하여 CRC 접선계수와 포물선 함수를 사용하였다. 케이블 부재는 새그의 영향이 고려되었다. 연구 결과 등가탄성계수가 반영된 등가트러스 요소를 사용한 경우 강사장교의 극한강도가 케이블 요소 또는 현수선 요소를 사용하여 평가한 극한강도 보다 안전측으로 평가되었다.

This paper deals with the influence of behavior of a variety of cable elements on the limit strength of steel cable-stayed bridges. The softening plastic-hinge model, which is represented in this study for the limit strength evaluation of the example bridge, considers both geometric and material nonlinearites. Geometric nonlinearity of beam-column members are accounted by using stability function, and material nonlinearity - by using CRC tangent modulus and parabolic function. Cable sag effect is considered for cable members. The result of this study shows that the limit strength of the example bridge using the equivalent of elasticity for truss straight elements is smaller than those using the cable or the catenary elements.

키워드

참고문헌

  1. AISC (2001), Load and resistance factor design specification, AISC, 3rd ed., Chicago.
  2. AASHTO, AASHTO LRFD Bridge Design Specification, AASHTO, 1998.
  3. El-Zanaty, M., Murray, D., and Bjorhovde, R. (1980) Inelastic behavior of multistory steel frames, Structural Engineering Report No. 83, University of Alberta, Alberta, Canada.
  4. Ermopoulos, J. C., Vlahinos, A. S., and Wang, Y. C. (1992) Stability analysis og cable-stayed bridges, Computers and Structures, 44(5), pp. 1083-1089. https://doi.org/10.1016/0045-7949(92)90331-S
  5. Ernst, H.J. (1965) Der E-Modul von Seilen unter Beruecksichtigung des Durchhanges, Der Bauingenieur 40, pp. 52-55.
  6. Fleming, J.F. (1979) Nonlinear static analysis of cable-stayed bridge structures, Computer & Structures, 10(4), pp. 621-635. https://doi.org/10.1016/0045-7949(79)90006-3
  7. Gimsing, N. J. (1983) Cable Supported bridges- Concepts and Design, John Wiley & Sons.
  8. Karoumi, R. (1999) Some modeling aspects in the nonlinear finite element analysis of cable supported bridges, Computers & Structures, 71, pp. 397-412. https://doi.org/10.1016/S0045-7949(98)00244-2
  9. Kim, S.E. and Chen, W.F. (1996(a)) Practical advanced analysis for unbraced steel frame design, ASCE J. Struct. Eng., ASCE, 122(11), pp. 1259-1265. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1259)
  10. Kim, S.E. and Chen, W.F. (1996(b)) Practical advanced analysis for braced steel frame design, ASCE J. Struct. Eng., 122(11), pp. 1266-1274. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:11(1266)
  11. Nazmy, A.S. and Abdel-Ghaffar, A.M. (1990) Three-dimensional nonlinear static analysis of cable-stayed bridges, Computers and Structures, 34(2), pp. 257-271. https://doi.org/10.1016/0045-7949(90)90369-D
  12. Smith, P.S. (1999) Cable Mechanics and Computation in B2000, Delft University of Technology Faculty of Aerospace Engineering, The Netherlands.
  13. Wang, P.H., Yang, C.G. (1996) Parametric Studies on Cable-Stayed Bridges, Computer & Structures, 60(6), pp. 243-260. https://doi.org/10.1016/0045-7949(95)00382-7