Effects of Hydrocarbon Additions on Gas-liquid Mass Transfer Coefficients in Biphasic Bioreactors

  • Silva, Teresa Lopes da (Instituto Nacional de Engenharia, Tecnologia e Inovacao, Departamento de Biotecnologia, Unidade de Bioengenharia e Bioprocessos, Estrada do Paco do Lumiar) ;
  • Calado, Vitor (Instituto Nacional de Engenharia, Tecnologia e Inovacao, Departamento de Biotecnologia, Unidade de Bioengenharia e Bioprocessos, Estrada do Paco do Lumiar) ;
  • Silva, Nadia (Instituto Nacional de Engenharia, Tecnologia e Inovacao, Departamento de Biotecnologia, Unidade de Bioengenharia e Bioprocessos, Estrada do Paco do Lumiar) ;
  • Mendes, Rui L. (Instituto Nacional de Engenharia, Tecnologia e Inovacao, Departamento de Energias Renovaveis, Unidade de Biomassa, Estrada do Paco do Lumiar) ;
  • Alves, Sebastiao S. (Instituto Superior Tecnico, Departamento de Engenharia Quimica e Biologica, Centro de Engenharia Biologica e Qulmica) ;
  • Vasconcelos, Jorge M.T. (Instituto Superior Tecnico, Departamento de Engenharia Quimica e Biologica, Centro de Engenharia Biologica e Qulmica) ;
  • Reis, Alberto (Instituto Nacional de Engenharia, Tecnologia e Inovacao, Departamento de Biotecnologia, Unidade de Bioengenharia e Bioprocessos, Estrada do Paco do Lumiar)
  • 발행 : 2006.06.30

초록

The effects of aliphatic hydrocarbons (n-hexadecane and n-dodecane) on the volumetric oxygen mass transfer coefficient $(k_L\;a)$ were studied in flat alveolar airlift reactor and continuous stirred tank reactors (CSTRs). In the flat alveolar airlift reactor, high aeration rates (>2vvm) were required in order to obtain efficient organic-aqueous phase dispersion and reliable $k_La$ measurements. Addition of 1% (v/v) n-hexadecane or n-dodecane increased the $k_La$ 1.55- and 1.33-fold, respectively, compared to the control (superficial velocity: $25.8{\times}10^{-3}m/s$, sparger orifice diameter: 0.5 mm). Analysis of the gas-liquid interfacial area a and the liquid film mass transfer coefficient $k_L$ suggests that the observed $k_La$ increase was a function of the media's liquid film mass transfer. Addition of 1% (v/v) n-hexadecane or n-dodecane to analogous setups using CSTRs led to a $k_La$ increase by a factor of 1.68 and 1.36, respectively (superficial velocity: $2.1{\times}10^{-3}m/s$, stirring rate: 250 rpm). These results propose that low-concentration addition of oxygen-vectors to aerobic microbial cultures has additional benefit relative to incubation in purely aqueous media.

키워드

참고문헌

  1. Ju, L.-K. and C. S. Ho (1989) Oxygen diffusion coefficient and solubility in n-hexadecane. Biotechnol. Bioeng. 34: 1221-1224 https://doi.org/10.1002/bit.260340914
  2. Mark, H. and R. Bronnenmeier (1985) Mechanical stress and microbial production. pp. 369-392. In: H.-J. Rehm and G. Reed (eds.). Biotechnology. VCH, Weinheim, Germany
  3. Deziel, E., Y. Comeau, and R. Villemur (1999) Two-liquidphase bioreactors for enhanced degradation of hydrophobic/ toxic compounds. Biodegradation 10: 219-233 https://doi.org/10.1023/A:1008311430525
  4. Malinowski, J. J. (2001) Two-phase partitioning bioreactors in fermentation technology. Biotechnol. Adv. 19: 525-538 https://doi.org/10.1016/S0734-9750(01)00080-5
  5. Ho, C. S., L.-K. Ju, and R. F. Baddour (1990) Enhancing penicillin fermentations by increased oxygen solubility through the addition of n-hexadecane. Biotechnol. Bioeng. 36: 1110-1118 https://doi.org/10.1002/bit.260361106
  6. Jia, S., M. Wang, P. Kahar, Y. Park, and M. Okabe (1997) Enhancement of yeast fermentation by addition of oxygen vectors in air-lift bioreactor. J. Ferment. Bioeng. 84: 176- 178 https://doi.org/10.1016/S0922-338X(97)82552-4
  7. Menge, M., J. Mukherjee, and T. Scheper (2001) Application of oxygen vectors to Claviceps purpurea cultivation. Appl. Microbiol. Biotechnol. 55: 411-416 https://doi.org/10.1007/s002530100592
  8. Wei, D. Z. and H. Liu (1998) Promotion of L-asparaginase production by using n-dodecane. Biotechnol. Tech. 12: 129-131 https://doi.org/10.1023/A:1008888400727
  9. Giridhar, R. and A. K. Srivastava (2000) Productivity enhancement in l-sorbose fermentation using oxygen vector. Enzyme Microb. Technol. 27: 537-541 https://doi.org/10.1016/S0141-0229(00)00252-0
  10. Jialong, W. (2000) Enhancement of citric acid production by Aspergillus niger using n-dodecane as an oxygen vector. Process Biochem. 35: 1079-1083 https://doi.org/10.1016/S0032-9592(00)00142-4
  11. Lai, L. S., T. H. Tsai, and T. C. Wang (2002) Application of oxygen vectors to Aspergillus terreus cultivation. J. Biosci. Bioeng. 94: 453-459 https://doi.org/10.1016/S1389-1723(02)80224-9
  12. Galaction, A. I., D. Cascaval, M. Turnea, and E. Folescu (2005) Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors. 2. Propionobacterium shermanii broths. Bioprocess Biosyst. Eng. 27: 263-271 https://doi.org/10.1007/s00449-005-0416-2
  13. MacLean, G. (1977) Oxygen diffusion rates in organic fermentation broths. Process Biochem. 12: 22-28
  14. Lowe, K. C., M. R. Davey, and J. B. Power (1998) Perfluorochemicals: their applications and benefits to cell culture. Trends Biotechnol. 16: 272-277 https://doi.org/10.1016/S0167-7799(98)01205-0
  15. Zhao, S., S. Kuttuva, and L. Ju (1999) Oxygen transfer characteristics of multi-phase dispersions simulating water- in-oil xanthan fermentations. Bioprocess Eng. 20: 313-323 https://doi.org/10.1007/s004490050597
  16. Rols, J. L., J. S. Condoret, C. Fonade, and G. Goma (1990) Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors. Biotechnol. Bioeng. 35: 427-435 https://doi.org/10.1002/bit.260350410
  17. Alves, S. S., C. I. Maia, and J. M. T. Vasconcelos (2004) Gas-liquid mass transfer coefficient in stirred tanks interpreted through bubble contamination kinetics. Chem. Eng. Process. 43: 823-830 https://doi.org/10.1016/S0255-2701(03)00100-4
  18. Ozbek, B. and S. Gayik (2001) The studies on the oxygen mass transfer coefficient in a bioreactor. Process Biochem. 36: 729-741 https://doi.org/10.1016/S0032-9592(00)00272-7
  19. Linek, V., P. Benes, J. Sinkule, and T. Moucha (1993) Non-ideal pressure step method for $k_La$ measurement. Chem. Eng. Sci. 48: 1593-1599 https://doi.org/10.1016/0009-2509(93)80119-B
  20. Moucha, T. V., V. Linek, E. Prokopova (2003) Gas holdup, mixing time, and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade, and techmix impeller and their combinations. Chem. Eng. Sci. 58: 1839-1846 https://doi.org/10.1016/S0009-2509(02)00682-6
  21. Silva, T. L., A. Mendes, R. L. Mendes, V. Calado, S. S. Alves, J. M. T. Vasconcelos, and A. Reis (2006) Effect of n-dodecane on Crypthecodinium cohnii fermentations and DHA production. J. Ind. Microbiol. Biotechnol. 33: 408-416 https://doi.org/10.1007/s10295-006-0081-8
  22. Galaction, A. I., D. Cascaval, C. Oniscu, and M. Turnea (2004) Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors. 1. Simulated fermentation broths. Bioprocess Biosyst. Eng. 26: 231-238