Characterization of a Ligninase Producing Strain, Serratia marcescens HY-5 isolated from Sympetrum dopressiusculum

고추좀잠자리 (Sympetrum depressiusculum)로부터 분리한 리그닌 분해균주, Serratia marcescens HY-5의 특성

  • 김기덕 (한국생명공학연구원 곤충소재연구센터) ;
  • 박두상 (한국생명공학연구원 곤충소재연구센터) ;
  • 신동하 ((주)인섹트바이오텍) ;
  • 한보나 (한국생명공학연구원 곤충소재연구센터) ;
  • 오현우 (한국생명공학연구원 곤충소재연구센터) ;
  • 윤영남 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 박호용 (한국생명공학연구원 곤충소재연구센터)
  • Published : 2006.12.30

Abstract

A ligniolytic bacterial strain was isolated from the digestive tract of a red dragonfly, Sympetrum dopressiusculum. It was identified as a Serratia marcescens HY-5 by 16S rDNA sequence analysis and physiological and biochemical analysis. The isolated strain showed proportional increase of ligninolytic activity to the cell growth in the culture media which include lignin compounds. It showed about 25-45% decomposition of lignin compound by 48 hr incubation especially, showed effective decomposition of monomer lignin compounds, vanillin and guaiacol, and a dimer, dealkaline lignin. PCR amplification of 16S rDNA followed by denaturing gradient gel electrophoresis analysis showed high density of S. marcescens HY-5 in the gut of the S. depressiusculum at both gut samples which collected at different site.

고추좀잠자리의 장으로부터 리그닌 분해활성을 보이는 미생물을 분리하였으며 16s rDNA 서열분석 및 생리 생화학적 동정에 의해 Serratia marcescens에 속하는 새로운 균주로 밝혀졌다. 분리된 균주는 리그닌 화합물을 포함하는 배지에서 배양하였을 때 cell growth의 증가에 따라 리그닌 화합물에 대한 분해능이 증가하였으며 48시간의 배양에 의해 20-45%의 분해능을 나타내었고, 특히 monomer 화합물인 vanillin 및 guaiacol과 dimer 화합물인 dealkaline 리그닌에 대한 분해능이 높았다. 분리된 균주 S. marcescens HY-5는 PCR에 의한 16S rDNA의 증폭과 denaturing gradient gel electrophoresis에 의한 장내 세균의 분포를 조사하였을 때 높은 밀도의 분포를 나타내었으며 서로 다른 지역에서 채집된 고추좀잠자리에서 공통적으로 발견되는 특징을 보여주었다.

Keywords

References

  1. Ashida, M and P.T. Brey. 1997. Recent advances in prophenoloxidase research. pp. 135-172 in Molecular Mechanisms of the Insect Immune Response, eds. by P.T. Brey and D. Hultmark, Chapman and Hall, London
  2. Breznak, J.A. 1982. Intestinal microbiota of termites and other xylophaguous insects. Annu. Rev. Microbiol. 36: 323-343 https://doi.org/10.1146/annurev.mi.36.100182.001543
  3. Breznak, J.A. and A. Brune. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 39: 453-487 https://doi.org/10.1146/annurev.en.39.010194.002321
  4. Broderick, N.A., K.F. Raffa, R.M. Goodman, and J. Handelsman. 2004. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl. Environ. Microbiol. 70: 293-300 https://doi.org/10.1128/AEM.70.1.293-300.2004
  5. Claudia, E., T. Ulrike, and L. Karl-Erik. 1996. The lignin olytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Appl. Evioron. Microbiol. 62: 1151-1158
  6. Egert, M., B. Wagner, T. Lemke, A. Brune, and M. Friedrich. 2003. Microbial community structure in the midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl. Environ. Microbiol. 69: 6659-6668 https://doi.org/10.1128/AEM.69.11.6659-6668.2003
  7. French, J.RJ., G.L. Turner and J.F. Bradbury. 1976. Nitrogen fixation by bacteria from the hindgut of termites. J. Gen. Microbiol. 95: 202-206 https://doi.org/10.1099/00221287-95-2-202
  8. Grkovic, S., T.R. Glare, T.A. Jackson, and G.E. Corbett. 1995. Genes essential for amber disease in grass grubs are located on the large plasmid found in Serratia entomopila and Serratia proteamaculans. Appl. Environ. Microbiol. 61: 2218-2223
  9. Hastings, R. 1999. Application of denaturing gradient gel electrophoresis to microbial ecology. pp 175-186. in Environmental monitoring of bacteria. eds by C. Edwards. 333 pp. Hunana Press, New Jersey
  10. Heo, S., J. Kwak, H.W. Oh, D.S. Park, K.S. Bae, D.H. Shin, and H.Y. Park. 2006. Characterization of an extracellular xylanase in Panibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759
  11. Hines, D.A., P.N. Saurugger, G.M. Ihler, and M.J. Benedik. 1988. Genetic analysis of extracellular proteins of Serratia marcescens. J. Bacteriol. 170: 4141-4146 https://doi.org/10.1128/jb.170.9.4141-4146.1988
  12. Hyodo, F., T. Inoue, J.I. Azuma, I. Tayasu and T. Abe. 2000. Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biology & Biochemistry 32: 653-658 https://doi.org/10.1016/S0038-0717(99)00192-3
  13. Kawai, E., H. Akatsuka, A. Idei, T. Shibatani, and K. Omori. 1998. Serratia marcescens S-layer protein is secreted extracel-lularly via an ATP-binding cassette exporter, the Lip system. Mol. Microbiol. 27: 941-952 https://doi.org/10.1046/j.1365-2958.1998.00739.x
  14. Kinya, K., S. Kozaki and M. Sakuranaga. 1998. Degradation of lignin compounds by bacteria from termite guts. Biotechnol. Lett. 20: 459-462 https://doi.org/10.1023/A:1005432027603
  15. Kirk, T.K. 1984. Degradation of lignin. pp 399-437 in Microbial degradation of organic compounds. eds. by Gibson, D.T., Marcel Dekker, New York
  16. Lai-Fook. 1966. The repair of wounds in the integument of insects. J. Insect Physiol. 12: 195-226 https://doi.org/10.1016/0022-1910(66)90136-3
  17. Lee, G.E. C.H. Kim, H.J. Kwon, J. Kwak, D.H. Shin, D.S. Park, K.S. Bae, and H.Y. Park. 2004. Biochemical characterization of an extracellular protease in Serratia proteomaculans isolated from a spider. Kor. J. Microbiol. 40: 269-274
  18. Marty, K.B., C.L. Williams, L.J. Guynn, M.J. Benedik, and S.R. Blanke. 2002. Characterization of a cytotoxic factor in culture filtrates of Serratia marcescens. Infect. Immun. 70: 1121-1128 https://doi.org/10.1128/IAI.70.3.1121-1128.2002
  19. Park, D.S., S.W. Shin, M.G. Kim, S.S. Park, W.J. Lee, P.T. Brey, and H.Y. Park. 1997. Isolation and characterization of the cDNA encoding the prophenoloxidase of fall webworm, Hyphantria cunea. Insect Biochem. Molec. Biol. 27: 983-992 https://doi.org/10.1016/S0965-1748(97)00081-7
  20. Rochelle, P.A., J.C. Fry, R.J. Parkes and A.J. Weightman. 1992. DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol. Lett. 100: 59-66 https://doi.org/10.1111/j.1574-6968.1992.tb05682.x
  21. Schmitz, G. and V. Braun. 1985. Cell-bound and secreted proteases of Serratia marcescens. J. Bacteriol. 161: 1002-1009
  22. Smibert, R.M. and N.R. Krieg. 1994. Phenotypic characterization. pp 607-654 in Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C
  23. Sundman, V. and L. Nase. 1971. A simple plate test for direct visualization of biological lignin degradation. Paper och Tra. 53: 67-71
  24. Tuncer, M., A.S. Ball, A. Rob and T.W. Michael. 1999. Optimization of extracellular lignocellulolytic enzyme production by a thermophilic actinomycete Thermomonospora fusca BD25. Enzyme and Microb. Technol. 25: 38-47 https://doi.org/10.1016/S0141-0229(99)00012-5