[ $H_{\infty}$ ] Filtering for Descriptor Systems

  • Chen, Yue-Peng (School of Automation, Wuhan University of Technology) ;
  • Zhou, Zu-De (Department of Mechantronic Engineering, Wuhan University of Technology) ;
  • Zeng, Chun-Nian (School of Automation, Wuhan University of Technology) ;
  • Zhang, Qing-Ling (Institute of Systems Science, College of Science, Northeastern University)
  • Published : 2006.12.30

Abstract

The paper is concerned with $H_{\infty}$ filtering for descriptor systems. A necessary and sufficient condition is established in terms of linear matrix inequalities(LMIs) for the existence of normal filters such that the error systems are admissible and the transfer function from the disturbance to the filtering error output satisfies a prescribed $H_{\infty}$-norm bound constraint. When these LMIs are feasible, an explicit parameterization expression of all desired normal filter is given. All these results are yielded without decomposing the original descriptor systems, which makes the filter design procedure simple and direct. Finally, a numerical example is derived to demonstrate the applicability of the proposed approach.

Keywords

References

  1. B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice-Hall, Upper Saddle River, NJ, 1979
  2. J. O'Reilly, Observers for Linear Systems, Academic, New York, 1983
  3. R. C. Chung and P. R. Belanger, 'Minimumsensitivity filter for linear time-invariant stochastic systems with uncertain parameters,' IEEE Trans. on Automatic Control, vol. 21, no. 1, pp. 98-104, January 1976 https://doi.org/10.1109/TAC.1976.1101145
  4. K. M. Nagpal and P. P. Khargonekar, 'Filtering and smoothing in an $H_{\infty}$ setting,' IEEE Trans. on Automatic Control, vol. 36, no. 1, pp. 152-166, January 1991 https://doi.org/10.1109/9.67291
  5. U. Shaked and Y. Theodor, $H_{\infty}$ optimal estimation: A tutorial,' Proc. of IEEE Conference Decision and Control, Tucson, AZ, pp.2278-2286, 1992
  6. P. G. Park and T. Kailath, '$H_{\infty}$ filtering via convex optimization,' International Journal of Control, vol. 66, pp. 15-22, 1997 https://doi.org/10.1080/002071797224793
  7. L. H. Xie, L. L. Lu, D. Zhang, and H. S. Zhang, 'Improved robust $H_2$ and $H_{\infty}$ filtering for uncertain discrete-time systems,' Automatica, vol. 40, pp. 873-880, 2004 https://doi.org/10.1016/j.automatica.2004.01.003
  8. M. Fu, 'Interpolation approach to $H_{\infty}$ optimal estimation and its interconnection to loop transfer recovery,' System and Control Letters, vol. 17, pp. 29-36, 1991 https://doi.org/10.1016/0167-6911(91)90095-V
  9. M. J. Grimble and A. E. Sayed, 'Solution of the $H_{\infty}$ optimal linear filtering problem for discretetime systems,' IEEE Trans. on Acoustics Speech Signal Processing, vol. 38, no. 8, pp. 1092-1104, August 1990 https://doi.org/10.1109/29.57538
  10. K. Takaba and T. Katayama, 'Discrete-time $H_{\infty}$ algebraic Riccati equation and parametrization of all $H_{\infty}$ filters,' International Journal of Control, vol. 64, pp. 1129-1149, 1996 https://doi.org/10.1080/00207179608921678
  11. R. W. Newcomb, 'The semistate description of nonlinear time-variable circuits,' IEEE Trans. on Circuits Systems, vol. 28, pp. 62-71, 1981 https://doi.org/10.1109/TCS.1981.1084908
  12. L. Pandolfi, 'Generalized control systems, boundary control systems and delayed control systems,' Mathematic of Control, Signals and Systems, vol. 3, pp. 165-181, 1990 https://doi.org/10.1007/BF02551366
  13. L. Y. Dai, Singular Control Systems, Springerverlag, Berlin, 1989
  14. M. Darouach, M. Zasadzinski, and D. Mehdi, 'State estimation of stochastic singular linear systems,' International Journal of Systems Science, vol. 24, pp. 345-354, 1993 https://doi.org/10.1080/00207729308949493
  15. Z. L. Deng and Y. Xu, 'Descriptor Wiener state estimators,' Automatica, vol. 36, pp. 1761-1766, 2000 https://doi.org/10.1016/S0005-1098(00)00079-0
  16. P. Gahinet and P. Apkarian, 'A linear matrix inequality approach to $H_{\infty}$ control,' International Journal of Robust and Nonlinear Control, vol. 4, pp. 421-448, 1994 https://doi.org/10.1002/rnc.4590040403
  17. Q. L. Zhang and V. Sreeram, '$H_{\infty}$ suboptimal model reduction for descriptor systems,' Proc. of American Control Conference, pp. 1168-1173, 2002
  18. S. Y. Xu, J. Lam, and Y. Zou, '$H_{\infty}$ filtering for singular systems,' IEEE Trans. on Automatic Control, vol. 48, no. 12, pp. 2217-2222, December 2003 https://doi.org/10.1109/TAC.2003.820149
  19. R. Nikoukhah, S. L. Campbell, and F. Delebecque, 'Kalman filtering for general discrete-time linear systems,' IEEE Trans. on Automatic Control, vol. 44, no. 9, pp. 1829-1839, September 1999 https://doi.org/10.1109/9.793722
  20. S. P. Boyd, L. E. Ghaoui, E. Feron, and V.Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994
  21. J. C. Geromel, 'Optimal linear filtering under parameter uncertainty,' IEEE Trans. on Signal Processing, vol. 47, no. 1, pp. 168-175, January 1999
  22. T. Iwasaki and R. E. Skelton, 'All controllers for the general $H_{\infty}$ control problem: LMI existence conditions and state space formulas,' Automatica, vol. 30, no. 8, pp. 1307-1317, August 1994 https://doi.org/10.1016/0005-1098(94)90110-4
  23. I. Masubuchi, Y. Kamitane, A. Ohara, and N. Suda, '$H_{\infty}$ control for descriptor systems: A matrix inequalities approach,' Automatica, vol. 33, no. 4, pp. 669-673, April 1997 https://doi.org/10.1016/S0005-1098(96)00193-8
  24. S. Y. Xu, J. Lam, W. Q. Liu, and Q. L.Zhang, '$H_{\infty}$ model reduction for singular systems: Continuous-time case,' lEE Proceeding Control Theory Application, vol. 150, no. 6, pp. 637-641, 2003