Improved Algorithm for Fully-automated Neural Spike Sorting based on Projection Pursuit and Gaussian Mixture Model

  • Kim, Kyung-Hwan (Department of Biomedical Engineering, Yonsei University)
  • Published : 2006.12.30

Abstract

For the analysis of multiunit extracellular neural signals as multiple spike trains, neural spike sorting is essential. Existing algorithms for the spike sorting have been unsatisfactory when the signal-to-noise ratio(SNR) is low, especially for implementation of fully-automated systems. We present a novel method that shows satisfactory performance even under low SNR, and compare its performance with a recent method based on principal component analysis(PCA) and fuzzy c-means(FCM) clustering algorithm. Our system consists of a spike detector that shows high performance under low SNR, a feature extractor that utilizes projection pursuit based on negentropy maximization, and an unsupervised classifier based on Gaussian mixture model. It is shown that the proposed feature extractor gives better performance compared to the PCA, and the proposed combination of spike detector, feature extraction, and unsupervised classification yields much better performance than the PCA-FCM, in that the realization of fully-automated unsupervised spike sorting becomes more feasible.

Keywords

References

  1. R. E. N. Brown, L. M. Frank, D. Tang, M. C. Quirk, and M. A. Wilson, 'A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells,' J. Neurosci., vol. 18, pp. 7411-7425, 1998 https://doi.org/10.1523/JNEUROSCI.18-18-07411.1998
  2. D. K. Warland, P. Reinagel, and M. Meister, 'Decoding visual information from a population of retinal ganglion cells,' J. Neurophysiol., vol. 78, pp.2336-2350, 1997 https://doi.org/10.1152/jn.1997.78.5.2336
  3. J. Wessberg, C. R. Stambaugh, I. D. Kralik, P. D.Beck, M. Laubach, J. K. Chapin, J. Kim, S. J. Biggs, M. A. Srinivasan, and M. A. L. Nicolelis, 'Real-time prediction of hand trajectory by ensembles of cortical neurons in primates,' Nature, vol. 408, pp. 361-365, 2000 https://doi.org/10.1038/35042582
  4. K. V. Shenoy, D. Meeker, S. Cao, S. A. Kureshi, B. Pesaran, C. A. Buneo, A. P. Batista, P. P. Mitra, J. W. Burdick, and R. A. Andersen, 'Neural prosthetic control signals from plan activity,' NeuroReport, vol. 14, pp. 1-6, 2003 https://doi.org/10.1097/00001756-200301200-00001
  5. E. M. Schmidt, 'Computer separation of multiunit neuroelectric data: A review,' J. Neurosci. Meth., vol. 12, pp. 95-111,1984 https://doi.org/10.1016/0165-0270(84)90009-8
  6. M. S. Lewicki, 'A review of methods for spike sorting: the detection and classification of neural action potentials,' Network: Computa-tion in Neural System, vol. 9, pp. R53-R78, 1998 https://doi.org/10.1088/0954-898X/9/4/001
  7. R. Chandra and L. M. Optican, 'Detection, classification, and superposition resolution of action potentials in multiunit single channel recordings by an on-line real-time neural network,' IEEE Trans. Biomed. Eng., vol. 44, pp. 403-412, 1997 https://doi.org/10.1109/10.568916
  8. K. H. Kim and S. J. Kim, 'Neural spike sorting under Nearly 0 dB signal-to-noise ratio using nonlinear energy operator and artificial neural network classifier,' IEEE Trans. Biomed. Eng., vol. 47, pp. 1406-1411, 2000 https://doi.org/10.1109/10.871415
  9. G. Zouridakis and D. C. Tam, 'Identification of reliable spike templates in multi-unit extracellular recordings using fuzzy clustering,' Comp. Meth. Prog. in Biomed., vol. 61, pp. 91-98, 2000 https://doi.org/10.1016/S0169-2607(99)00032-2
  10. M. S. Fee, P. P. Mitra, and D. Kleinfeld, 'Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and nonGaussian variability,' J. Neurosci. Meth., vol. 69, pp. 175-188, 1996 https://doi.org/10.1016/S0165-0270(96)00050-7
  11. M. Sahani, Latent Variable Models for Neural Data Analysis, Ph.D. dissertation, California Institute of Technology, 1999
  12. S. Shoham, M. R. Fellows, and R. A. Normann, 'Robust, automatic spike sorting using mixtures of multivariate t-distributions,' J. Neurosci. Meth., vol. 127, pp. 111-122, 2003 https://doi.org/10.1016/S0165-0270(03)00120-1
  13. K. H. Kim and S. J. Kim, 'Method for unsupervised classification of multiunit neural signal recording under low signal-to-noise ratio,' IEEE Trans. on Biomed. Eng., vol. 50, pp. 421-431, 2003 https://doi.org/10.1109/TBME.2003.809503
  14. K. H. Kim and S. J. Kim, 'A wavelet-based method for action potential detection from extracellular neural signal recording with low signal-to-noise ratio,' IEEE Trans. on Biomed. Eng., vol. 50, pp. 999-1011, 2003 https://doi.org/10.1109/TBME.2003.814523
  15. G. Zouridakis and D. C. Tam, 'Identification of reliable spike templates in multi-unit extracellular recordings using fuzzy clustering,' Comp. Meth. Prog. in Biomed., vol. 61, pp. 91-98, 2000 https://doi.org/10.1016/S0169-2607(99)00032-2
  16. P. Zhang, J. Wu, Y. Zhou, P. Liang, and J. Yuan, 'Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem,' J. Neurosci. Meth., vol. 135, pp. 55-65, 2004 https://doi.org/10.1016/j.jneumeth.2003.12.001
  17. X. L. Xie and G. A. Beni, 'A validity measure for fuzzy clustering,' IEEE Trans. Pattern Anal., Intell., vol. 13, pp. 841-847, Mach 1991 https://doi.org/10.1109/34.85677
  18. A. Hyvarinen, 'Fast and robust fixed-point algorithms for independent component analysis,' IEEE Trans. Neural Network, vol. 10, pp. 626-634, 1999 https://doi.org/10.1109/72.761722
  19. P. J. Huber, 'Projection pursuit,' Ann. Statisti, vol. 13, pp. 435-475, 1985 https://doi.org/10.1214/aos/1176349519
  20. K. Jain, R. P. W. Duin, and J. Mao, 'Statistical pattern recognition: A review,' IEEE Trans. Pattern Anal. Mach. Intel., vol. 22, pp. 4-37, 2000 https://doi.org/10.1109/34.824819
  21. M. Windham and A. Cutler, 'Information ratios for validating mixture analysis,' J. Amer. Stat. Assoc., vol. 87, pp. 1188-1192, 1992 https://doi.org/10.2307/2290659
  22. D. A. Langan, J. W. Modestino, and J. Zhang, 'Cluster validation for unsupervised stochastic model-based image segmentation,' IEEE Trans. Imag. Proc., vol. 7, pp. 404-420, 1998
  23. D. G. Ruenberger, Optimization by Vector Space Methods, John Wiley & Sons, 1969
  24. M. A. Carreira-Perpinan, 'Mode-finding for mixtures of Gaussian distribution,' IEEE Trans. Pattern Anal. Mach. Intell, vol. 22, pp. 1318-1323, 2000 https://doi.org/10.1109/34.888716
  25. T. H. Yoon, E. I. Hwang, D. Y. Shin, S. I. Park, S. J. Oh, S. C. Jung, H. C. Shin, and S. J. Kim, 'A micromachined silicon depth probe for multichannel neural recording,' IEEE Trans. Biomed. Eng., vol. 47, pp. 1082-1087,2000 https://doi.org/10.1109/10.855936
  26. M. H. Hayes, Statistical Digital Signal Processing and Modeling, Wiley, 1996
  27. E. N. Brown, R. E. Kass, and P. P. Mitra, 'Multiple neural spike train data analysis: Stateof-the-art and future challenges,' Nature Neurosci., vol. 7, pp. 456-461, 2004 https://doi.org/10.1038/nn1228
  28. S. Shoham and S. S. Nagarajan, 'The theory of CNS recording', in Neurprosthetics: Theory and Applications, K. W. Horch and G. S. Dhillon (editors), World Scientific, New Jersey, 2004