References
- R. E. N. Brown, L. M. Frank, D. Tang, M. C. Quirk, and M. A. Wilson, 'A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells,' J. Neurosci., vol. 18, pp. 7411-7425, 1998 https://doi.org/10.1523/JNEUROSCI.18-18-07411.1998
- D. K. Warland, P. Reinagel, and M. Meister, 'Decoding visual information from a population of retinal ganglion cells,' J. Neurophysiol., vol. 78, pp.2336-2350, 1997 https://doi.org/10.1152/jn.1997.78.5.2336
- J. Wessberg, C. R. Stambaugh, I. D. Kralik, P. D.Beck, M. Laubach, J. K. Chapin, J. Kim, S. J. Biggs, M. A. Srinivasan, and M. A. L. Nicolelis, 'Real-time prediction of hand trajectory by ensembles of cortical neurons in primates,' Nature, vol. 408, pp. 361-365, 2000 https://doi.org/10.1038/35042582
- K. V. Shenoy, D. Meeker, S. Cao, S. A. Kureshi, B. Pesaran, C. A. Buneo, A. P. Batista, P. P. Mitra, J. W. Burdick, and R. A. Andersen, 'Neural prosthetic control signals from plan activity,' NeuroReport, vol. 14, pp. 1-6, 2003 https://doi.org/10.1097/00001756-200301200-00001
- E. M. Schmidt, 'Computer separation of multiunit neuroelectric data: A review,' J. Neurosci. Meth., vol. 12, pp. 95-111,1984 https://doi.org/10.1016/0165-0270(84)90009-8
- M. S. Lewicki, 'A review of methods for spike sorting: the detection and classification of neural action potentials,' Network: Computa-tion in Neural System, vol. 9, pp. R53-R78, 1998 https://doi.org/10.1088/0954-898X/9/4/001
- R. Chandra and L. M. Optican, 'Detection, classification, and superposition resolution of action potentials in multiunit single channel recordings by an on-line real-time neural network,' IEEE Trans. Biomed. Eng., vol. 44, pp. 403-412, 1997 https://doi.org/10.1109/10.568916
- K. H. Kim and S. J. Kim, 'Neural spike sorting under Nearly 0 dB signal-to-noise ratio using nonlinear energy operator and artificial neural network classifier,' IEEE Trans. Biomed. Eng., vol. 47, pp. 1406-1411, 2000 https://doi.org/10.1109/10.871415
- G. Zouridakis and D. C. Tam, 'Identification of reliable spike templates in multi-unit extracellular recordings using fuzzy clustering,' Comp. Meth. Prog. in Biomed., vol. 61, pp. 91-98, 2000 https://doi.org/10.1016/S0169-2607(99)00032-2
- M. S. Fee, P. P. Mitra, and D. Kleinfeld, 'Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and nonGaussian variability,' J. Neurosci. Meth., vol. 69, pp. 175-188, 1996 https://doi.org/10.1016/S0165-0270(96)00050-7
- M. Sahani, Latent Variable Models for Neural Data Analysis, Ph.D. dissertation, California Institute of Technology, 1999
- S. Shoham, M. R. Fellows, and R. A. Normann, 'Robust, automatic spike sorting using mixtures of multivariate t-distributions,' J. Neurosci. Meth., vol. 127, pp. 111-122, 2003 https://doi.org/10.1016/S0165-0270(03)00120-1
- K. H. Kim and S. J. Kim, 'Method for unsupervised classification of multiunit neural signal recording under low signal-to-noise ratio,' IEEE Trans. on Biomed. Eng., vol. 50, pp. 421-431, 2003 https://doi.org/10.1109/TBME.2003.809503
- K. H. Kim and S. J. Kim, 'A wavelet-based method for action potential detection from extracellular neural signal recording with low signal-to-noise ratio,' IEEE Trans. on Biomed. Eng., vol. 50, pp. 999-1011, 2003 https://doi.org/10.1109/TBME.2003.814523
- G. Zouridakis and D. C. Tam, 'Identification of reliable spike templates in multi-unit extracellular recordings using fuzzy clustering,' Comp. Meth. Prog. in Biomed., vol. 61, pp. 91-98, 2000 https://doi.org/10.1016/S0169-2607(99)00032-2
- P. Zhang, J. Wu, Y. Zhou, P. Liang, and J. Yuan, 'Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem,' J. Neurosci. Meth., vol. 135, pp. 55-65, 2004 https://doi.org/10.1016/j.jneumeth.2003.12.001
- X. L. Xie and G. A. Beni, 'A validity measure for fuzzy clustering,' IEEE Trans. Pattern Anal., Intell., vol. 13, pp. 841-847, Mach 1991 https://doi.org/10.1109/34.85677
- A. Hyvarinen, 'Fast and robust fixed-point algorithms for independent component analysis,' IEEE Trans. Neural Network, vol. 10, pp. 626-634, 1999 https://doi.org/10.1109/72.761722
- P. J. Huber, 'Projection pursuit,' Ann. Statisti, vol. 13, pp. 435-475, 1985 https://doi.org/10.1214/aos/1176349519
- K. Jain, R. P. W. Duin, and J. Mao, 'Statistical pattern recognition: A review,' IEEE Trans. Pattern Anal. Mach. Intel., vol. 22, pp. 4-37, 2000 https://doi.org/10.1109/34.824819
- M. Windham and A. Cutler, 'Information ratios for validating mixture analysis,' J. Amer. Stat. Assoc., vol. 87, pp. 1188-1192, 1992 https://doi.org/10.2307/2290659
- D. A. Langan, J. W. Modestino, and J. Zhang, 'Cluster validation for unsupervised stochastic model-based image segmentation,' IEEE Trans. Imag. Proc., vol. 7, pp. 404-420, 1998
- D. G. Ruenberger, Optimization by Vector Space Methods, John Wiley & Sons, 1969
- M. A. Carreira-Perpinan, 'Mode-finding for mixtures of Gaussian distribution,' IEEE Trans. Pattern Anal. Mach. Intell, vol. 22, pp. 1318-1323, 2000 https://doi.org/10.1109/34.888716
- T. H. Yoon, E. I. Hwang, D. Y. Shin, S. I. Park, S. J. Oh, S. C. Jung, H. C. Shin, and S. J. Kim, 'A micromachined silicon depth probe for multichannel neural recording,' IEEE Trans. Biomed. Eng., vol. 47, pp. 1082-1087,2000 https://doi.org/10.1109/10.855936
- M. H. Hayes, Statistical Digital Signal Processing and Modeling, Wiley, 1996
- E. N. Brown, R. E. Kass, and P. P. Mitra, 'Multiple neural spike train data analysis: Stateof-the-art and future challenges,' Nature Neurosci., vol. 7, pp. 456-461, 2004 https://doi.org/10.1038/nn1228
- S. Shoham and S. S. Nagarajan, 'The theory of CNS recording', in Neurprosthetics: Theory and Applications, K. W. Horch and G. S. Dhillon (editors), World Scientific, New Jersey, 2004