DOI QR코드

DOI QR Code

Synthesis of Monodispersed Barium Titanate Nanopowders by Alkoxide-Hydroxide Sol-Precipitation Method

  • Yoon, Song-Hak (Department of Materials Science and Engineering, Pohang University of Science and Technology) ;
  • Kim, Min-Gyu (Pohang Accelerator Laboratory, Pohang University of Science and Technology) ;
  • Shin, Nam-Soo (Pohang Accelerator Laboratory, Pohang University of Science and Technology) ;
  • Kim, In-Sung (Electric and Magnetic Devices Research Group, Korea Electrotechnology Research Institute) ;
  • Baik, Sung-Gi (Department of Materials Science and Engineering, Pohang University of Science and Technology)
  • Published : 2006.11.30

Abstract

Barium titanate nanoparticles were synthesized under N$_2$ atmosphere by the hydrolysis and condensation of barium hydroxide octahydrate and titanium (IV) isopropoxide. The synthesized particles were aggregates of nanosized primary particles. The primary particles of about 20-50 nm in diameter became building blocks of larger secondary particles, which are in most cases spherical in shape. The size and morphological evolution of secondary particles are strongly related to the precursor concentration. The observations suggest that formation and control of secondary particles is an essential step in the alkoxidehydroxide sol-precipitation process to obtain monodispersed barium titanate nanopowders.

Keywords

References

  1. C. Pithan, D. Hennings, and R. Waser, 'Progress in the Synthesis of Nanocrystalline $BaTiO_3$ Powders for MLCC,' Int. J. Appl. Ceram. Technol., 2 [1] 1-14 (2005) https://doi.org/10.1111/j.1744-7402.2005.02008.x
  2. A. J. Moulson and J. M. Herbert, 'Electroceramics: Materials, Properties, Applications'; pp. 159-73. John Wiley & Sons, West Sussex, England, 2003
  3. P. P. Phule and S. H. Risbud, 'Low-Temperature Synthesis and Processing of Electric Materials in the $BaO-TiO_2$ System,' J. Mater. Sci. 25 1169-83 (1990)
  4. H. Kishi, Y. Mizuno, and H. Chazono, 'Base-Metal Electrode- Multilayer Ceramic Capacitors: Past, Present, and Future Perspectives,' Jpn. J. Appl. Phys. 42 [1] 1-15 (2003) https://doi.org/10.1143/JJAP.42.1
  5. J. C. Niepce and G. Tomas, 'About the Mechanism of the Solid-Way Synthesis of Barium Metatitanate. Industrial Consequences,' Solid State Ionics, 43 [1] 69-76 (1990) https://doi.org/10.1016/0167-2738(90)90472-4
  6. R. K. Dutta and J. R. Gregg, 'Hydrothermal Synthesis of Tetragonal Barium Titanate,' Chem. Mater., 4 [4] 843-46 (1992) https://doi.org/10.1021/cm00022a019
  7. D. Chen and X. Jiao, 'Solvothermal Synthesis and Characterization of Barium Titanate Powders,' J. Am. Ceram. Soc., 83 [10] 2637-39 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01606.x
  8. J. Wang, J. Fang, S.-C. Ng, L.-M. Gan, C.-H. Chew, X. Wang, and Z. Shen, 'Ultrafine Barium Titanate Powders via Microemulsion Processing Routes,' J. Am. Ceram. Soc., 82 [4] 873-81 (1999) https://doi.org/10.1111/j.1151-2916.1999.tb01848.x
  9. A. Testino, M. T. Buscaglia, M. Viviani, V. Buscaglia, and P. Nanni, 'Synthesis of $BaTiO_3$ Particles with Tailored Size by Precipitation from Aqueous Solutions,' J. Am. Ceram. Soc., 87 [1] 79-83 (2004) https://doi.org/10.1111/j.1551-2916.2004.00079.x
  10. C. Lemoine, B. Gilbert, B. Michaux, J.-P. Pirard, and A. J. Lecloux, 'Synthesis of Barium Titanate by the Sol-Gel Process,' J. Non-Cryst. Solids, 175 [1] 1-13 (1994) https://doi.org/10.1016/0022-3093(94)90309-3
  11. S. S. Flaschen, 'An Aqueous Synthesis of Barium Titanate,' J. Am. Chem. Soc., 77 [4] 6194 (1955)
  12. K. Kiss, J. Meander, M. S. Vukasovich, and R. J. Lockhart, 'Ferroelectric of Ultrafine Particle Size: I, Synthesis of Titanate Powders of Ultrafine Particle Size,' J. Am. Ceram. Soc., 49 [6] 291-94 (1966)
  13. F. Chaput and J.-P. Boilot, 'Alkoxide-Hydroxide Route to Synthesize $BaTiO_3$-Based Powders,' J. Am. Ceram. Soc., 73 [4] 942-48 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05141.x
  14. S. A. Bruno and W. L. Monson, 'Process for Preparing Crystalline Mixed Metal Oxides,' US Patent 5087437, 1992
  15. S. Yoon, M. G. Kim, N. Shin, and S. Baik, 'Formation Mechanisms of Tetragonal Barium Titanate Nanoparticles in Alkoxide-Hydroxide Sol-Precipitation Synthesis,' J. Am. Ceram. Soc., 89 [6] 1816-21 (2006) https://doi.org/10.1111/j.1551-2916.2006.01056.x
  16. S. Yoon, M. G. Kim, N. Shin, I. S. Kim, and S. Baik, 'Synthesis of Tetragonal Barium Titanate Nanoparticles via Alkoxide-Hydroxide Sol-precipitation: Effect of Water Addition,' J. Am. Ceram. Soc., accepted
  17. J. Park, V. Privman, and E. Matijevic, 'Model of Formation of Monodispersed Colloids,' J. Phys. Chem. B, 105 [47] 11630-35 (2001) https://doi.org/10.1021/jp011306a
  18. J. K. Bailey, C. J. Brinker, and M. L. Mecartney, 'Growth Mechanism of Iron Oxide Particles of Differing Morphologies from the Forced Hydrolysis of Ferric Chloride Solutions,' J. Colloid Interface Sci., 157 [1] 1-13 (1993) https://doi.org/10.1006/jcis.1993.1150
  19. V. Privman, D. V. Goia, J. Park, and E. Matijevic, 'Mechanism of Formation of Monodispersed Colloids by Aggregation of Nanosize Precursors,' J. Colloid Interface Sci., 213 [1] 36-45 (1999) https://doi.org/10.1006/jcis.1999.6106
  20. M. M. Lencka and R. E. Riman, 'Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders,' Chem. Mater., 5 [1] 61-70 (1993) https://doi.org/10.1021/cm00025a014
  21. M. M. Lencka and R. E. Riman, 'Thermodynamics of the Hydrothermal Synthesis of Calcium Titanate with Reference to other Alkaline-Earth Titanates,' Chem. Mater., 7 [1] 18-25 (1995) https://doi.org/10.1021/cm00049a006