Capacitance Scaling 구조와 여러 개의 전하 펌프를 이용한 고속의 ${\Sigma}{\Delta}$ Fractional-N PLL

A Fast-Locking Fractional-N PLL with Multiple Charge Pumps and Capacitance Scaling Scheme

  • 권태하 (부경대학교 전자, 컴퓨터정보통신공학부)
  • Kwon, Tae-Ha (Dept. of Electronic, Computer and Telecommunication Engineering, Pukyong National University)
  • 발행 : 2006.10.25

초록

본 논문에서는 capacitance scaling 구조를 이용하여 짧은 locking 시간과 작은 fractional spur를 가지는 ${\Sigma}{\Delta}$ fractional-N PLL을 설계하였다. 루프필터의 실효 커패시턴스를 변화시키기 위하여 여러 개의 전하펌프를 이용해 서로 다른 경로로 커패시터에 전류를 공급하였다. 필터의 실효 커패시턴스는 동작상태에 따라 크기가 변하며 커패시터들은 하나의 PLL 칩에 집적화 할 수 있을 정도로 작은 크기를 가진다. 또한 PLL이 lock 되면 전하펌프 전류의 크기도 작아져 fractional spur의 크기도 작아진다. 제안된 구조는 HSPICE CMOS $0.35{\mu}m$ 공정으로 시뮬레이션 하였으며 $8{\mu}s$ 이하의 locking 시간을 가진다. PLL의 루프필터는 200pF, 17pF의 작은 커패시터와 $2.8k{\Omega}$의 저항으로 설계되었다.

A novel ${\Sigma}{\Delta}$ fractional-N PLL architecture for fast locking and fractional spur suppressing is proposed based on the capacitance scaling scheme. It changes the effective capacitance of loop filter (LF) by increasing and decreasing current to the capacitor via different paths with multiple charge pumps. The effective capacitance of loop filter (LF) can be scaled up/down depending on operating status while keeping LF capacitors small enough to be integrated into a single PLL chip. Fractional spurs suppressing have been achieved by reducing the magnitude of charge pump current when the PLL is in-lock without degrading fast locking characteristic. It has been simulated by HSPICE in a CMOS $0.35{\mu}m$ process, and shows flat locking time is less than $8{\mu}s$ with the small size of LF capacitors, 200pF and 17pF, and $2.8k{\Omega}$ resistor.

키워드

참고문헌

  1. J. Lee and B.Kim, 'A low-noise fast lock phase-locked loop with adaptive bandwidth control,' IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1137-1145, Aug. 2000 https://doi.org/10.1109/4.859502
  2. J. Dunning et al., 'An all-digital phase-locked loop with 50-cycle lock time suitable for high-performance microprocessors,' IEEE J. Solid-State Circuits, vol. 30, no. 4, pp,412-422, Apr. 1995 https://doi.org/10.1109/4.375961
  3. L.C. Liu and B.H. Li, 'Fast locking scheme for PLL frequency synthesizer,' Electronics Letters, vol. 40, no.15, pp. 918-920, July 2004 https://doi.org/10.1049/el:20045367
  4. Keliu Shu, Edgar Snchez-Sinencio, Jos Silva-Martnez and Sherif H. K. Embabi, 'A 2,4-GHz Monolithic Fractional-N Frequency Synthesizer With Robust Phase-Switching Prescaler and Loop Capacitance Multiplier,' IEEE J. Solid-State Circuits, vol.. 38, no. 6, pp. 866-874, June 2003 https://doi.org/10.1109/JSSC.2003.811875
  5. Jan Craninckx and Michel S. J. Steyaert, 'A Fully Integrated CMOS DCS-l800 Frequency Synthesizer,' IEEE J. Solid-State Circuits, vol. 33, no. 12, pp.2054-2065, Dec. 1998 https://doi.org/10.1109/4.735547
  6. Suclhakar Parmati, Lars Jansson and Ian Galton, 'A Wideband 2.4-GHz Delta-Sigma Fractional-NPLL With 1-Mb/s In-Loop Modulation,' IEEE J. Solid-State Circuits, vol. 39, no. 1, pp.49-62, Jan. 2004 https://doi.org/10.1109/JSSC.2003.820858
  7. B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998
  8. C. H. Park and B. Kim, 'A Low Noise, 900-MHz VCO in 0.6-m CMOS,' IEEE J. Solid-State Circuits, vol. 34, no. 5, pp.586-591, May 1999 https://doi.org/10.1109/4.760367