DOI QR코드

DOI QR Code

Quantitative Determination of Nicotine in a PDMS Microfluidic Channel Using Surface Enhanced Raman Spectroscopy

  • Jung, Jae-hyun (Department of Applied Chemistry, Hanyang University) ;
  • Choo, Jae-bum (Department of Applied Chemistry, Hanyang University) ;
  • Kim, Duck-Joong (Department of Biomedical Engineering, Dankook University) ;
  • Lee, Sang-Hun (Department of Biomedical Engineering, Korea University)
  • Published : 2006.02.20

Abstract

Rapid and highly sensitive determination of nicotine in a PDMS microfluidic channel was investigated using surface enhanced Raman spectroscopy (SERS). A three-dimensional PDMS microfluidic channel was fabricated for this purpose. This channel shows a high mixing efficiency because the transverse and vertical dispersions of the fluid occur simultaneously through the upper and lower zig zag-type blocks. A higher efficiency of mixing could also be obtained by splitting each of the confluent streams into two sub-streams that then joined and recombined. The SERS signal was measured after nicotine molecules were effectively adsorbed onto silver nanoparticles by passing through the three-dimensional channel. A quantitative analysis of nicotine was performed based on the measured peak area at 1030 $cm^{-1}$. The detection limit was estimated to be below 0.1 ppm. In this work, the SERS detection, in combination with a PDMS microfluidic channel, has been applied to the quantitative analysis of nicotine in aqueous solution. Compared to the other conventional analytical methods, the detection sensitivity was enhanced up to several orders of magnitude.

Keywords

References

  1. Banon, A. W.; Decker, M. W.; Holladay, M. W.; Curzon, P.; Donnelly-Roberts, D.; Puttfarcken, P. S.; Bitner, R. S.; Diaz, A.; Dickenson, A. H.; Porsolt, R. D.; Williams, M.; Arneric, S. P. Science 1998, 279, 77 https://doi.org/10.1126/science.279.5347.77
  2. Holladay, M. W.; Dart, M. J.; Lynch, J. K. J. Med. Chem. 1997, 40, 4169 https://doi.org/10.1021/jm970377o
  3. Elgen, R. M.; Hunter, J. C.; Dray, A. Trends Pharmacol. Sci. 1999, 20, 337 https://doi.org/10.1016/S0165-6147(99)01372-3
  4. Watson, I. D. J. Chromatogr. 1977, 143, 203 https://doi.org/10.1016/S0378-4347(00)81825-3
  5. Schmidt, F. Int. Z. Klin. Pharm. Ther. Tox. 1968, 1, 461
  6. Kintz, P.; Ludes, B.; Mangin, P. J. Forensic Sci. 1992, 37, 72
  7. Balabanova, S.; Wei, B.; Rosing, G.; Scherer, G.; Mayerhofer, C.; Chen, Z.; Zhang, W.; Rosenthal, J. Anthropol. Anz. 1996, 54, 341
  8. Deviprasad, G. R.; D'Souza, F. Chem. Commun. 2000, 1915
  9. Craig Medical Distribution Inc.: Vista, CA, 92081, USA
  10. Pal, T.; Narayanan, V. A.; Stokes, D. L.; Vo-Dinh, T. Anal. Chim. Acta 1998, 368, 21 https://doi.org/10.1016/S0003-2670(98)00192-5
  11. Ishikawa, H.; Imai, Y.; Kurokawa, Y. Vib. Spectrosc. 1995, 8, 445 https://doi.org/10.1016/0924-2031(94)00071-N
  12. Barber, T. E.; List, M. S.; Haas, J. W.; Wachter, E. A. Appl. Spectrosc. 1994, 48, 1423 https://doi.org/10.1366/0003702944027985
  13. Bell, S. E. J.; Sirimuthu, N. M. S. Analyst 2004, 129, 1032 https://doi.org/10.1039/b408775e
  14. Laserna, J. J. Anal. Chim. Acta 1993, 283, 607 https://doi.org/10.1016/0003-2670(93)85274-N
  15. Taylor, G. T.; Sharma, S. K.; Mohanan, K. Appl. Spectrosc. 1990, 44, 635 https://doi.org/10.1366/0003702904087217
  16. Park, T.; Lee, S.; Seong, G. H.; Lee, E. K.; Kim, Y. S.; Ji, W. H.; Hwang, S. Y.; Gweon, D. G.; Lee, S. Lab. Chip 2005, 5, 437 https://doi.org/10.1039/b414457k
  17. Yea, K.; Lee, S.; Kyong, J. B.; Choo, J.; Lee, E. K.; Joo, S.-W.; Lee, S. Analyst 2005, 130, 1009 https://doi.org/10.1039/b501980j
  18. Lee, D.; Seong, G. H.; Choo, J.; Gweon, D. G.; Lee, S. Appl. Spectrosc. in press
  19. Leopold, N.; Lendl, B. J. Phys. Chem. B 2003, 107, 5723 https://doi.org/10.1021/jp027460u
  20. Kim, D. J.; Oh, H. J.; Lee, S.; Park, T.; Choo, J. Analyst 2005, 130, 293 https://doi.org/10.1039/b414180f
  21. Park, T.; Lee, M.; Choo, J.; Kim, Y. S.; Lee, E. K.; Kim, D. J.; Lee, S. Appl. Spectrosc. 2004, 58, 1172 https://doi.org/10.1366/0003702042336019
  22. Heule, M.; Manz, A. Lab. Chip 2004, 4, 506 https://doi.org/10.1039/b404633a
  23. Jeon, S.; Woo, J.; Kyong, J. B.; Choo, J. Bull. Kor. Chem. Soc. 2001, 22, 1264
  24. Jeon, S.; Choo, J.; Kim, S.; Kwon, Y.; Kim, J.; Lee, Y.; Chung, H. J. Mol. Struct. 2002, 609, 159 https://doi.org/10.1016/S0022-2860(01)00968-1

Cited by

  1. Recent developments in optofluidic-surface-enhanced Raman scattering systems: Design, assembly, and advantages vol.26, pp.02, 2011, https://doi.org/10.1557/jmr.2010.18
  2. Tobacco alkaloids analyzed by Raman spectroscopy and DFT calculations vol.43, pp.8, 2012, https://doi.org/10.1002/jrs.3127
  3. Review of Surface Enhanced Raman Scattering Applications in Forensic Science vol.88, pp.1, 2016, https://doi.org/10.1021/acs.analchem.5b04131
  4. High dilution surface-enhanced Raman spectroscopy for rapid determination of nicotine in e-liquids for electronic cigarettes vol.142, pp.6, 2017, https://doi.org/10.1039/C6AN02286C
  5. Vertically Aligned Silicon Nanowire Array Decorated by Ag or Au Nanoparticles as SERS Substrate for Bio-molecular Detection pp.1557-1963, 2017, https://doi.org/10.1007/s11468-017-0605-2
  6. Evaluation of nicotine sensor based on copper nanoparticles and carbon nanotubes vol.5, pp.3, 2015, https://doi.org/10.1007/s40097-015-0154-1
  7. Fast and sensitive DNA analysis using changes in the FRET signals of molecular beacons in a PDMS microfluidic channel vol.387, pp.8, 2007, https://doi.org/10.1007/s00216-007-1158-6
  8. Effect of surface morphology on surface-enhanced Raman scattering of 4-aminobenzenethiol adsorbed on gold substrates vol.39, pp.4, 2008, https://doi.org/10.1002/jrs.1859
  9. SERS: a versatile tool in chemical and biochemical diagnostics vol.390, pp.1, 2008, https://doi.org/10.1007/s00216-007-1667-3
  10. Quantitative surface-enhanced Raman spectroscopy vol.37, pp.5, 2008, https://doi.org/10.1039/b705965p
  11. Surface-enhanced Raman Spectroscopy of Ethephone Adsorbed on Silver Surface vol.27, pp.4, 2006, https://doi.org/10.5012/bkcs.2006.27.4.545
  12. Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor vol.10, pp.3, 2006, https://doi.org/10.3807/josk.2006.10.3.130
  13. Raman and Fluorescence Studies of Thermotropic Liquid-Crystalline Oligomers with Different Type of Coils vol.28, pp.2, 2006, https://doi.org/10.5012/bkcs.2007.28.2.193
  14. Open Sandwich FRET Immunoassay of Estrogen Receptor β in a PDMS Microfluidic Channel vol.29, pp.7, 2006, https://doi.org/10.5012/bkcs.2008.29.7.1297
  15. Electrokinetic trapping and surface enhanced Raman scattering detection of biomolecules using optofluidic device integrated with a microneedles array. vol.7, pp.1, 2006, https://doi.org/10.1063/1.4793224