DOI QR코드

DOI QR Code

Development of Bipolar Plate Stack Type Microbial Fuel Cells

  • Shin, Seung-Hun (Department of Chemistry and Department of Advanced Technology Fusion, Bio/Molecular Informatics Center, Konkuk University) ;
  • Choi, Young-jin (Department of Microbial Engineering and Department of Advanced Technology Fusion, Bio/Molecular Informatics Center, Konkuk University) ;
  • Na, Sun-Hee (Department of Chemistry and Department of Advanced Technology Fusion, Bio/Molecular Informatics Center, Konkuk University) ;
  • Jung, Seun-ho (Department of Microbial Engineering and Department of Advanced Technology Fusion, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Sung-hyun (Department of Chemistry and Department of Advanced Technology Fusion, Bio/Molecular Informatics Center, Konkuk University)
  • Published : 2006.02.20

Abstract

Microbial fuel cells (MFC) stacked with bipolar plates have been constructed and their performance was tested. In this design, single fuel cell unit was connected in series by bipolar plates where an anode and a cathode were made in one graphite block. Two types of bipolar plate stacked MFCs were constructed. Both utilized the same glucose oxidation reaction catalyzed by Gram negative bacteria, Proteus vulgaris as a biocatalyst in an anodic compartment, but two different cathodic reactions were employed: One with ferricyanide reduction and the other with oxygen reduction reactions. In both cases, the total voltage was the mathematical sum of individual fuel cells and no degradation in performance was found. Electricity from these MFCs was stored in a supercapacitor to drive external loads such as a motor and electric bulb.

Keywords

References

  1. Katz, E.; Willner, I. J. Am. Chem. Soc. 2003, 125, 6803 https://doi.org/10.1021/ja034008v
  2. Palmore, G. T. R.; Bertschy, H.; Bergens, S. H.; Whitesides, G. M. J. Electroanal. Chem. 1998, 443, 155 https://doi.org/10.1016/S0022-0728(97)00393-8
  3. Tsujimura, S.; Tatsumi, H.; Ogawa, J.; Shimizu, S.; Kano, K.; Ikeda, T. J. Electroanal. Chem. 2001, 496, 69 https://doi.org/10.1016/S0022-0728(00)00239-4
  4. Chen, T.; Barton, S. C.; Binyamin, G.; Gao, Z. Q.; Zhang, Y. C.; Kim, H. H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630 https://doi.org/10.1021/ja0163164
  5. Mano, N.; Mao, F.; Heller, A. J. Am. Chem. Soc. 2002, 124, 12962
  6. Willner, I.; Katz, E. Angew. Chem., Int. Ed. 2000, 39, 1180 https://doi.org/10.1002/(SICI)1521-3773(20000403)39:7<1180::AID-ANIE1180>3.0.CO;2-E
  7. Raitman, O. A.; Patolsky, F.; Katz, E.; Willner, I. Chem. Commun. 2002, 1936
  8. Karube, I.; Matsunaga, T.; Tsuru, S.; Suzuki, S. Biotechnol. Bioeng. 1977, 19, 1727 https://doi.org/10.1002/bit.260191112
  9. Delaney, G. M.: Bennetto, H. P.; Mason, J. R.; Roller, S. D.; Stirling, J. L.; Thurston, C. F. J. Chem. Tech. Biotechnol. 1984, 34B, 13
  10. Bennetto, H. P.; Stirling, J. L.; Tanaka, K.; Vega, C. A. Biotechnol. Bioeng. 1983, 25, 559 https://doi.org/10.1002/bit.260250219
  11. Davis, J. B.; Yarborough, H. F. Science 1962, 137, 615 https://doi.org/10.1126/science.137.3530.615
  12. Reimers, C. E.; Tender, L. M.; Fertig, S.; Wang, W. Environ. Sci. Technol. 2001, 35, 192 https://doi.org/10.1021/es001223s
  13. Kim, H. J.; Park, H. S.; Hyun, M. S.; Chang, I. S.; Kim, M.; Kim, B. H. Enzyme Microb. Technol. 2002, 30, 145 https://doi.org/10.1016/S0141-0229(01)00478-1
  14. Wilkinson, S. Autonomous Robots. 2000, 9, 99 https://doi.org/10.1023/A:1008984516499
  15. Stirling, J. L.; Bennetto, H. P.; Delaney, G. M.; Mason, J. R.; Roller, S. B.; Tanaka, K.; Thurston, C. F. Biochem. Soc. Trans. 1983, 11, 451 https://doi.org/10.1042/bst0110451
  16. Allen, R. M.; Bennetto, H. P. Appl. Biochem. Biotechnol. 1993, 39-40, 27 https://doi.org/10.1007/BF02918975
  17. Choi, Y.; Jung, E.; Park, H.; Paik, S. R.; Jung, S.; Kim, S. Bull. Korean Chem. Soc. 2004, 25, 813 https://doi.org/10.5012/bkcs.2004.25.6.813
  18. Kordesch, K.; Simander, G. Fuel Cells and Their Appications; VCH: Weinheim, 1996
  19. Choi, Y.; Kim, N.; Kim, S.; Jung, S. Bull. Korean Chem. Soc. 2003, 24, 437 https://doi.org/10.5012/bkcs.2003.24.4.437
  20. Kim, N.; Choi, Y.; Jung, S.; Kim, S. Biotechnol. Bioeng. 2000, 70, 119
  21. Roller, S. D.; Bennetto, H. P.; Delaney, G. M.; Mason, J. R.; Stirling, J. L.; Thurston, C. F. J. Chem. Tech. Biotechnol. 1984, 34B, 3
  22. Choi, Y.; Song, J.; Jung, S.; Kim, S. J. Microbial Biology 2001, 11, 863

Cited by

  1. Investigating the effects of fluidic connection between microbial fuel cells vol.34, pp.4, 2011, https://doi.org/10.1007/s00449-010-0491-x
  2. Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal vol.4, pp.11, 2011, https://doi.org/10.1039/c1ee02451e
  3. Increasing power recovery and organic removal efficiency using extended longitudinal tubular microbial fuel cell (MFC) reactors vol.4, pp.2, 2011, https://doi.org/10.1039/C0EE00073F
  4. The Improvement of Power Output from Stacked Microbial Fuel Cells (MFCs) vol.34, pp.17, 2012, https://doi.org/10.1080/15567036.2012.660561
  5. Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells vol.36, pp.12, 2013, https://doi.org/10.1007/s00449-013-0967-6
  6. Dynamically Adaptive Control System for Bioanodes in Serially Stacked Bioelectrochemical Systems vol.47, pp.10, 2013, https://doi.org/10.1021/es400239k
  7. Polarization behavior of microbial fuel cells under stack operation vol.59, pp.18, 2014, https://doi.org/10.1007/s11434-014-0243-4
  8. Occurrence and Implications of Voltage Reversal in Stacked Microbial Fuel Cells vol.7, pp.6, 2014, https://doi.org/10.1002/cssc.201300949
  9. Optimal Energy Harvesting from Serially-Connected Microbial Fuel Cells pp.1557-9948, 2014, https://doi.org/10.1109/TIE.2014.2371437
  10. Electricity Production by the Application of a Low Voltage DC-DC Boost Converter to a Continuously Operating Flat-Plate Microbial Fuel Cell vol.10, pp.5, 2017, https://doi.org/10.3390/en10050596
  11. Minimizing losses in bio-electrochemical systems: the road to applications vol.79, pp.6, 2008, https://doi.org/10.1007/s00253-008-1522-2
  12. A novel configuration of microbial fuel cell stack bridged internally through an extra cation exchange membrane vol.30, pp.6, 2008, https://doi.org/10.1007/s10529-008-9658-9
  13. In situ Spectroelectrochemical Study of Quercetin Oxidation and Complexation with Metal Ions in Acidic Solutions vol.28, pp.5, 2006, https://doi.org/10.5012/bkcs.2007.28.5.889
  14. Effect of Initial Carbon Sources on the Performance of a Microbial Fuel Cell Containing Environmental Microorganism Micrococcus luteus vol.28, pp.9, 2007, https://doi.org/10.5012/bkcs.2007.28.9.1591
  15. Polypyrrole-Coated Reticulated Vitreous Carbon as Anode in Microbial Fuel Cell for Higher Energy Output vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.168
  16. Improved Performance of a Microbial Fuel Cell with Polypyrrole/Carbon Black Composite Coated Carbon Paper Anodes vol.29, pp.7, 2006, https://doi.org/10.5012/bkcs.2008.29.7.1344
  17. Scaling up Microbial Fuel Cells vol.42, pp.20, 2008, https://doi.org/10.1021/es800775d
  18. Batteryless, Wireless Sensor Powered by a Sediment Microbial Fuel Cell vol.42, pp.22, 2006, https://doi.org/10.1021/es801763g
  19. Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack vol.11, pp.5, 2009, https://doi.org/10.1016/j.elecom.2009.02.027
  20. Methylene blue as electron promoters in microbial fuel cell vol.36, pp.20, 2011, https://doi.org/10.1016/j.ijhydene.2011.07.059
  21. Application of Biocathodes in Microbial Fuel Cells: Opportunities and Challenges vol.45, pp.3, 2006, https://doi.org/10.7745/kjssf.2012.45.3.410
  22. Continuous electricity generation with piggery wastewater treatment using an anaerobic baffled stacking microbial fuel cell vol.55, pp.8, 2015, https://doi.org/10.1080/19443994.2014.930702
  23. Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production vol.76, pp.3, 2006, https://doi.org/10.2166/wst.2017.253
  24. Overview of Recent Advancements in the Microbial Fuel Cell from Fundamentals to Applications: Design, Major Elements, and Scalability vol.12, pp.17, 2006, https://doi.org/10.3390/en12173390
  25. Recent Advances in the Design and Architecture of Bioelectrochemical Systems to Treat Wastewater and to Produce Choice-Based Byproducts vol.24, pp.3, 2020, https://doi.org/10.1061/(asce)hz.2153-5515.0000510
  26. Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment vol.286, pp.p3, 2006, https://doi.org/10.1016/j.chemosphere.2021.131856