References
- Katz, E.; Willner, I. J. Am. Chem. Soc. 2003, 125, 6803 https://doi.org/10.1021/ja034008v
- Palmore, G. T. R.; Bertschy, H.; Bergens, S. H.; Whitesides, G. M. J. Electroanal. Chem. 1998, 443, 155 https://doi.org/10.1016/S0022-0728(97)00393-8
- Tsujimura, S.; Tatsumi, H.; Ogawa, J.; Shimizu, S.; Kano, K.; Ikeda, T. J. Electroanal. Chem. 2001, 496, 69 https://doi.org/10.1016/S0022-0728(00)00239-4
- Chen, T.; Barton, S. C.; Binyamin, G.; Gao, Z. Q.; Zhang, Y. C.; Kim, H. H.; Heller, A. J. Am. Chem. Soc. 2001, 123, 8630 https://doi.org/10.1021/ja0163164
- Mano, N.; Mao, F.; Heller, A. J. Am. Chem. Soc. 2002, 124, 12962
- Willner, I.; Katz, E. Angew. Chem., Int. Ed. 2000, 39, 1180 https://doi.org/10.1002/(SICI)1521-3773(20000403)39:7<1180::AID-ANIE1180>3.0.CO;2-E
- Raitman, O. A.; Patolsky, F.; Katz, E.; Willner, I. Chem. Commun. 2002, 1936
- Karube, I.; Matsunaga, T.; Tsuru, S.; Suzuki, S. Biotechnol. Bioeng. 1977, 19, 1727 https://doi.org/10.1002/bit.260191112
- Delaney, G. M.: Bennetto, H. P.; Mason, J. R.; Roller, S. D.; Stirling, J. L.; Thurston, C. F. J. Chem. Tech. Biotechnol. 1984, 34B, 13
- Bennetto, H. P.; Stirling, J. L.; Tanaka, K.; Vega, C. A. Biotechnol. Bioeng. 1983, 25, 559 https://doi.org/10.1002/bit.260250219
- Davis, J. B.; Yarborough, H. F. Science 1962, 137, 615 https://doi.org/10.1126/science.137.3530.615
- Reimers, C. E.; Tender, L. M.; Fertig, S.; Wang, W. Environ. Sci. Technol. 2001, 35, 192 https://doi.org/10.1021/es001223s
- Kim, H. J.; Park, H. S.; Hyun, M. S.; Chang, I. S.; Kim, M.; Kim, B. H. Enzyme Microb. Technol. 2002, 30, 145 https://doi.org/10.1016/S0141-0229(01)00478-1
- Wilkinson, S. Autonomous Robots. 2000, 9, 99 https://doi.org/10.1023/A:1008984516499
- Stirling, J. L.; Bennetto, H. P.; Delaney, G. M.; Mason, J. R.; Roller, S. B.; Tanaka, K.; Thurston, C. F. Biochem. Soc. Trans. 1983, 11, 451 https://doi.org/10.1042/bst0110451
- Allen, R. M.; Bennetto, H. P. Appl. Biochem. Biotechnol. 1993, 39-40, 27 https://doi.org/10.1007/BF02918975
- Choi, Y.; Jung, E.; Park, H.; Paik, S. R.; Jung, S.; Kim, S. Bull. Korean Chem. Soc. 2004, 25, 813 https://doi.org/10.5012/bkcs.2004.25.6.813
- Kordesch, K.; Simander, G. Fuel Cells and Their Appications; VCH: Weinheim, 1996
- Choi, Y.; Kim, N.; Kim, S.; Jung, S. Bull. Korean Chem. Soc. 2003, 24, 437 https://doi.org/10.5012/bkcs.2003.24.4.437
- Kim, N.; Choi, Y.; Jung, S.; Kim, S. Biotechnol. Bioeng. 2000, 70, 119
- Roller, S. D.; Bennetto, H. P.; Delaney, G. M.; Mason, J. R.; Stirling, J. L.; Thurston, C. F. J. Chem. Tech. Biotechnol. 1984, 34B, 3
- Choi, Y.; Song, J.; Jung, S.; Kim, S. J. Microbial Biology 2001, 11, 863
Cited by
- Investigating the effects of fluidic connection between microbial fuel cells vol.34, pp.4, 2011, https://doi.org/10.1007/s00449-010-0491-x
- Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal vol.4, pp.11, 2011, https://doi.org/10.1039/c1ee02451e
- Increasing power recovery and organic removal efficiency using extended longitudinal tubular microbial fuel cell (MFC) reactors vol.4, pp.2, 2011, https://doi.org/10.1039/C0EE00073F
- The Improvement of Power Output from Stacked Microbial Fuel Cells (MFCs) vol.34, pp.17, 2012, https://doi.org/10.1080/15567036.2012.660561
- Comparing terracotta and earthenware for multiple functionalities in microbial fuel cells vol.36, pp.12, 2013, https://doi.org/10.1007/s00449-013-0967-6
- Dynamically Adaptive Control System for Bioanodes in Serially Stacked Bioelectrochemical Systems vol.47, pp.10, 2013, https://doi.org/10.1021/es400239k
- Polarization behavior of microbial fuel cells under stack operation vol.59, pp.18, 2014, https://doi.org/10.1007/s11434-014-0243-4
- Occurrence and Implications of Voltage Reversal in Stacked Microbial Fuel Cells vol.7, pp.6, 2014, https://doi.org/10.1002/cssc.201300949
- Optimal Energy Harvesting from Serially-Connected Microbial Fuel Cells pp.1557-9948, 2014, https://doi.org/10.1109/TIE.2014.2371437
- Electricity Production by the Application of a Low Voltage DC-DC Boost Converter to a Continuously Operating Flat-Plate Microbial Fuel Cell vol.10, pp.5, 2017, https://doi.org/10.3390/en10050596
- Minimizing losses in bio-electrochemical systems: the road to applications vol.79, pp.6, 2008, https://doi.org/10.1007/s00253-008-1522-2
- A novel configuration of microbial fuel cell stack bridged internally through an extra cation exchange membrane vol.30, pp.6, 2008, https://doi.org/10.1007/s10529-008-9658-9
- In situ Spectroelectrochemical Study of Quercetin Oxidation and Complexation with Metal Ions in Acidic Solutions vol.28, pp.5, 2006, https://doi.org/10.5012/bkcs.2007.28.5.889
- Effect of Initial Carbon Sources on the Performance of a Microbial Fuel Cell Containing Environmental Microorganism Micrococcus luteus vol.28, pp.9, 2007, https://doi.org/10.5012/bkcs.2007.28.9.1591
- Polypyrrole-Coated Reticulated Vitreous Carbon as Anode in Microbial Fuel Cell for Higher Energy Output vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.168
- Improved Performance of a Microbial Fuel Cell with Polypyrrole/Carbon Black Composite Coated Carbon Paper Anodes vol.29, pp.7, 2006, https://doi.org/10.5012/bkcs.2008.29.7.1344
- Scaling up Microbial Fuel Cells vol.42, pp.20, 2008, https://doi.org/10.1021/es800775d
- Batteryless, Wireless Sensor Powered by a Sediment Microbial Fuel Cell vol.42, pp.22, 2006, https://doi.org/10.1021/es801763g
- Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack vol.11, pp.5, 2009, https://doi.org/10.1016/j.elecom.2009.02.027
- Methylene blue as electron promoters in microbial fuel cell vol.36, pp.20, 2011, https://doi.org/10.1016/j.ijhydene.2011.07.059
- Application of Biocathodes in Microbial Fuel Cells: Opportunities and Challenges vol.45, pp.3, 2006, https://doi.org/10.7745/kjssf.2012.45.3.410
- Continuous electricity generation with piggery wastewater treatment using an anaerobic baffled stacking microbial fuel cell vol.55, pp.8, 2015, https://doi.org/10.1080/19443994.2014.930702
- Performance of air-cathode stacked microbial fuel cells systems for wastewater treatment and electricity production vol.76, pp.3, 2006, https://doi.org/10.2166/wst.2017.253
- Overview of Recent Advancements in the Microbial Fuel Cell from Fundamentals to Applications: Design, Major Elements, and Scalability vol.12, pp.17, 2006, https://doi.org/10.3390/en12173390
- Recent Advances in the Design and Architecture of Bioelectrochemical Systems to Treat Wastewater and to Produce Choice-Based Byproducts vol.24, pp.3, 2020, https://doi.org/10.1061/(asce)hz.2153-5515.0000510
- Recent advancements in microbial fuel cells: A review on its electron transfer mechanisms, microbial community, types of substrates and design for bio-electrochemical treatment vol.286, pp.p3, 2006, https://doi.org/10.1016/j.chemosphere.2021.131856