DOI QR코드

DOI QR Code

CeO2-Promoted Highly Active Catalyst, NiSO4/CeO2-ZrO2 for Ethylene Dimerization

  • Pae, Young-Il (Department of Chemistry, University of Ulsan) ;
  • Shin, Dong-Cheol (Department of Applied Chemistry, Engineering College, Kyungpook National University) ;
  • Sohn, Jong-Rack (Department of Applied Chemistry, Engineering College, Kyungpook National University)
  • Published : 2006.12.20

Abstract

The $NiSO_4/CeO_2-ZrO_2 $catalysts containing different nickel sulfate and $CeO_2$ contents were prepared by the impregnation method, where support, $CeO_2-ZrO_2$was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and cerium nitrate solution followed by adding an aqueous ammonia solution. No diffraction line of nickel sulfate was observed up to 20 wt %, indicating good dispersion of nickel sulfate on the surface of $CeO_2-ZrO_2$. The addition of nickel sulfate (or $CeO_2$) to $ZrO_2$ shifted the phase transition of $ZrO_2$ from amorphous to tetragonal to higher temperatures because of the interaction between nickel sulfate (or $CeO_2$) and $ZrO_2$. A catalyst (10-$NiSO_4/1-CeO_2-ZrO_2$) containing 10 wt % $NiSO_4$ and 1 mole % $CeO_2$, and calcined at $600{^{\circ}C}$ exhibited a maximum catalytic activity for ethylene dimerization. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The role of $CeO_2$was to form a thermally stable solid solution with zirconia and consequently to give high surface area, thermal stability and acidity of the sample.

Keywords

References

  1. Olah, G. A.; Prakash, G. K. S.; Sommer, J. Superacids; Wiley-Interscience: New York, U. S. A., 1985; p 33
  2. Ono, Y. Catal. Today 2003, 81, 3 https://doi.org/10.1016/S0920-5861(03)00097-X
  3. Arata, K. Adv. Catal. 1990, 37, 165 https://doi.org/10.1016/S0360-0564(08)60365-X
  4. Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New Solid Acids and Bases; Kodansha-Elsevier: Tokyo, 1989; p 185
  5. Sohn, J. R.; Lee, S. H. Appl. Catal. A: Gen. 2004, 266, 89 https://doi.org/10.1016/j.apcata.2004.01.034
  6. Arata, K. Appl. Catal. A: Gen. 1996, 146, 3 https://doi.org/10.1016/0926-860X(96)00046-4
  7. Hsu, C. Y.; Heimbuch, C. R.; Armes, C. T.; Gates, B. C. J. Chem. Soc., Chem. Commun. 1992, 1645
  8. Adeeva, V.; de Haan, H. W.; Janchen, J.; Lei, G. D.; Schunemann, V.; van de Ven, L. J. M.; Sachtler, W. M. H.; van Santen, R. A. J. Catal. 1995, 151, 364 https://doi.org/10.1006/jcat.1995.1039
  9. Wan, K. T.; Khouw, C. B.; Davis, M. E. J. Catal. 1996, 158, 311 https://doi.org/10.1006/jcat.1996.0030
  10. Song, X.; Reddy, K. R.; Sayari, A. J. Catal. 1996, 161, 206 https://doi.org/10.1006/jcat.1996.0178
  11. Coelho, M. A.; Resasco, D. E.; Sikabwe, E. C.; White, R. L. Catal. Lett. 1995, 32, 253 https://doi.org/10.1007/BF00813219
  12. Ebitani, K.; Konishi, J.; Hattori, H. J. Catal. 1991, 130, 257 https://doi.org/10.1016/0021-9517(91)90108-G
  13. Signoretto, M.; Pinna, F.; Strukul, G.; Chies, P.; Cerrato, G.; Ciero, S. D.; Morterra, C. J. Catal. 1997, 167, 522 https://doi.org/10.1006/jcat.1997.1575
  14. Hua, W.; Xia, Y.; Yue, Y.; Gao, Z. J. Catal. 2000, 196, 104 https://doi.org/10.1006/jcat.2000.3032
  15. Moreno, J. A.; Poncelet, G. J. Catal. 2001, 203, 153
  16. Arata, K.; Hino, M.; Yamagata, N. Bull. Chem. Soc. Jpn. 1990, 63, 244 https://doi.org/10.1246/bcsj.63.244
  17. Sohn, J. R.; Park, W. C.; Kim, H. W. J. Catal. 2002, 209, 69 https://doi.org/10.1006/jcat.2002.3581
  18. Sohn, J. R.; Seo, D. H.; Lee, S. H. J. Ind. Eng. Chem. 2004, 10, 309
  19. Sohn, J. R.; Kim, J. G.; Kwon, T. D.; Park, E. H. Langmuir 2002, 18, 1666 https://doi.org/10.1021/la011304h
  20. Urabe, K.; Koga, M.; Izumi, Y. J. Chem. Soc., Chem. Commun. 1989, 807
  21. Bernardi, F.; Bottoni, A.; Rossi, I. J. Am. Chem. Soc. 1998, 120, 7770 https://doi.org/10.1021/ja980604r
  22. Sohn, J. R.; Ozaki, A. J. Catal. 1979, 59, 303 https://doi.org/10.1016/S0021-9517(79)80034-2
  23. Sohn, J. R.; Ozaki, A. J. Catal. 1980, 61, 29 https://doi.org/10.1016/0021-9517(80)90336-X
  24. Wendt, G.; Fritsch, E.; Schollner, R.; Siegel, H. Z. Anorg. Allg. Chem. 1980, 467, 51 https://doi.org/10.1002/zaac.19804670107
  25. Sohn, J. R.; Shin, D. C. J. Catal. 1996, 160, 314 https://doi.org/10.1006/jcat.1996.0150
  26. Berndt, G. F.; Thomson, S. J.; Webb, G. J. J. Chem. Soc. Faraday Trans. 1 1983, 79, 195 https://doi.org/10.1039/f19837900195
  27. Herwijnen, T. V.; Doesburg, H. V.; Jong, D. V. J. Catal. 1973, 28, 391 https://doi.org/10.1016/0021-9517(73)90132-2
  28. Sohn, J. R.; Han, J. S.; Kim, H. W.; Pae, Y. I. C. Bull. Korean Chem. Soc. 2005, 26, 755 https://doi.org/10.5012/bkcs.2005.26.5.755
  29. Wendt, G.; Hentschel, D.; Finster, J.; Schollner, R. J. Chem. Soc. Faraday Trans. 1 1983, 79, 2013 https://doi.org/10.1039/f19837902013
  30. Kimura, K.; Ozaki, A. J. Catal. 1964, 3, 395 https://doi.org/10.1016/0021-9517(64)90142-3
  31. Sohn, J. R.; Park, W. C. Appl. Catal. A: Gen. 2002, 230, 11 https://doi.org/10.1016/S0926-860X(01)00952-8
  32. Sohn, J. R.; Kim, H. W.; Park, M. Y.; Park, E. H.; Kim, J. T.; Park, S. E. Appl. Catal. A: Gen. 1995, 128, 127 https://doi.org/10.1016/0926-860X(95)00057-7
  33. Sohn, J. R.; Cho, S. G.; Pae, Y. I.; Hayashi, S. J. Catal. 1996, 159, 170 https://doi.org/10.1006/jcat.1996.0076
  34. Sohn, J. R.; Choi, H. D.; Shin, D. C. Bull. Korean Chem. Soc. 2006, 27, 821 https://doi.org/10.5012/bkcs.2006.27.6.821
  35. Saur, O.; Bensitel, M.; Saad, A. B. M.; Lavalley, J. C.; Tripp, C. P.; Morrow, B. A. J. Catal. 1986, 99, 104 https://doi.org/10.1016/0021-9517(86)90203-4
  36. Yamaguchi, T. Appl. Catal. 1990, 61, 1 https://doi.org/10.1016/S0166-9834(00)82131-4
  37. Morrow, B. A.; McFarlane, R. A.; Lion, M.; Lavalley, J. C. J. Catal. 1987, 107, 232 https://doi.org/10.1016/0021-9517(87)90288-0
  38. Larsen, G.; Lotero, E.; Petkovic, L. M.; Shobe, D. S. J. Catal. 1997, 169, 67 https://doi.org/10.1006/jcat.1997.1698
  39. Afanasiev, P.; Geantot, C.; Breysse, M.; Coudurier, G.; Vedrine, J. C. J. Chem. Soc., Faraday Trans. 1994, 190, 193
  40. Sohn, J. R. J. Ind. Eng. Chem. 2004, 10, 1
  41. Dong, W.-S.; Roh, H.-S.; Jun, K.-W.; Park, S.-E.; Oh, Y.-S. Appl. Catal. A: Gen. 2002, 226, 63 https://doi.org/10.1016/S0926-860X(01)00883-3
  42. Loong, C.-K.; Ozawa, M. J. Alloys Compd. 2000, 303-304, 60 https://doi.org/10.1016/S0925-8388(00)00590-9
  43. Sohn, J. R.; Park ,W. C. Appl. Catal. A: Gen. 2003, 239, 269 https://doi.org/10.1016/S0926-860X(02)00392-7
  44. Siriwardane, R. V.; Poston, J. A. Jr.; Fisher, E. P.; Shen, M. S.; Miltz, A. L. Appl. Surf. Sci. 1999, 152, 219 https://doi.org/10.1016/S0169-4332(99)00319-0
  45. Satsuma, A.; Hattori, A.; Mizutani, K.; Furuta, A.; Miyamoto, A.; Hattori, T.; Murakami, Y. J. Phys. Chem. 1988, 92, 6052 https://doi.org/10.1021/j100332a042
  46. Olah, F. G. A.; Prakash, G. K. S.; Sommer, J. Science 1979, 206, 13 https://doi.org/10.1126/science.206.4414.13
  47. Sohn, J. R.; Ryu, S. G.. Langmuir 1993, 9, 126 https://doi.org/10.1021/la00025a029
  48. Jin, T.; Yamaguchi, T.; Tananbe, K. J. Phys. Chem. 1986, 90, 4794 https://doi.org/10.1021/j100411a017
  49. Sohn, J. R.; Kim, H. J. J. Catal. 1986, 101, 428 https://doi.org/10.1016/0021-9517(86)90270-8
  50. Sohn, J. R.; Lee, S. Y. Appl. Catal. A: Gen. 1997, 164, 127 https://doi.org/10.1016/S0926-860X(97)00163-4
  51. Loong, C.-K.; Richardson, Jr., J. W.; Ozawa, M. J. Catal. 1995, 157, 636 https://doi.org/10.1006/jcat.1995.1329
  52. Roh, H.-S.; Dong, W.-S.; Jun, K.-W.; Park, S.-E. Chem. Lett. 2001, 30, 88 https://doi.org/10.1246/cl.2001.88
  53. Sohn, J. R.; Lee, S. H.; Lim, J. S. Catal. Today 2006, 116, 143 https://doi.org/10.1016/j.cattod.2006.01.023
  54. Tanabe, K. Solid Acids and Bases; Kodansha: Tokyo, 1970; p 103
  55. Sohn, J. R.; Han, J. S. J. Ind. Eng. Chem. 2005, 11, 439
  56. Sohn, J. R.; Lim, J. S. Bull. Korean Chem. Soc. 2005, 26, 1029 https://doi.org/10.5012/bkcs.2005.26.7.1029

Cited by

  1. Nickel Catalyzed Olefin Oligomerization and Dimerization vol.120, pp.15, 2006, https://doi.org/10.1021/acs.chemrev.0c00076