• Title/Summary/Keyword: Promoting effect of $CeO_2$

Search Result 7, Processing Time 0.024 seconds

Physicochemical and Catalytic Properties of NiSO4/CeO2-ZrO2 Catalyst Promoted with CeO2 for Acid Catalysis

  • Sohn, Jong-Rack;Shin, Dong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1265-1272
    • /
    • 2007
  • A solid acid catalyst, NiSO4/CeO2-ZrO2 was prepared simply by promoting ZrO2 with CeO2 and supporting nickel sulfate on CeO2-ZrO2. The support of NiSO4 on ZrO2 shifted the phase transition of ZrO2 from amorphous to tetragonal to higher temperatures because of the interaction between NiSO4 and ZrO2. The surface area of 10-NiSO4/1-CeO2-ZrO2 promoted with CeO2 and calcined at 600 oC was very high (83 m2/g) compared to that of unpromoted 10-NiSO4/ZrO2 (45 m2/g). This high surface area of 10-NiSO4/1-CeO2-ZrO2 was due to the promoting effect of CeO2 which makes zirconia a stable tetragonal phase as confirmed by XRD. The role of CeO2 was to form a thermally stable solid solution with zirconia and consequently to give high surface area and acidity of the sample, and high thermal stability of the surface sulfate species. 10-NiSO4/1- CeO2-ZrO2 containing 1 mol% CeO2 and 10 wt% NiSO4, and calcined at 600 oC exhibited maximum catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation.

CeO2-Promoted Highly Active Catalyst, NiSO4/CeO2-ZrO2 for Ethylene Dimerization

  • Pae, Young-Il;Shin, Dong-Cheol;Sohn, Jong-Rack
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.1989-1996
    • /
    • 2006
  • The $NiSO_4/CeO_2-ZrO_2 $catalysts containing different nickel sulfate and $CeO_2$ contents were prepared by the impregnation method, where support, $CeO_2-ZrO_2$was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and cerium nitrate solution followed by adding an aqueous ammonia solution. No diffraction line of nickel sulfate was observed up to 20 wt %, indicating good dispersion of nickel sulfate on the surface of $CeO_2-ZrO_2$. The addition of nickel sulfate (or $CeO_2$) to $ZrO_2$ shifted the phase transition of $ZrO_2$ from amorphous to tetragonal to higher temperatures because of the interaction between nickel sulfate (or $CeO_2$) and $ZrO_2$. A catalyst (10-$NiSO_4/1-CeO_2-ZrO_2$) containing 10 wt % $NiSO_4$ and 1 mole % $CeO_2$, and calcined at $600{^{\circ}C}$ exhibited a maximum catalytic activity for ethylene dimerization. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The role of $CeO_2$was to form a thermally stable solid solution with zirconia and consequently to give high surface area, thermal stability and acidity of the sample.

Effect of $CeO_2$-addition and Particle Size of Doping Material on Characteristic of High-$T_c$ Superconducting Thick Film Using Diffusion Process ($CeO_2$첨가와 도포물질의 입자크기가 화산공정을 이용한 고온초전도 후막의 특성에 미치는 영향)

  • 임성훈;강형곤;홍세은;윤기웅;황종선;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.152-157
    • /
    • 2001
  • For the fabrication of YBa$_2$Cu$_3$O$_{x}$ thick film using diffusion process between $Y_3$BaCuO$_{5}$ and BaO+CuO, each material was selected as substrate and doping material. In this paper, we investigated the characteristic of YBa$_2$Cu$_3$O$_{x}$ thick film due to both addition of CeO$_2$into substrate and initial particle size of doping material. Through X-ray diffraction patterns and SEM photographs, the variation of composition and thickness of the formed phase was observed. It was from the experiment obtained that the addition of CeO$_2$into $Y_2$BaCuO$_{5}$ substrate and the initial particle size of doping material play important part in promoting the reaction between substrate and doping material.aterial.

  • PDF

Preparation and Characterization of $Pd/CeO_2/Ta/Si$ model catalysts

  • 김도희;우성일
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.145-145
    • /
    • 2000
  • M-CeO2 (M : noble metal) catalysts have been widely studied as three-way catalysts and methanol synthesis catalysts. Ceria is thought to play a number of roles in these catalysts. The Ce(IV)/Ce(III) redox pair may store/release gases under oxidizing/reducing conditions, extending the operational window. Additionally, metal-ceria interactions lead to several effects, including the dispersion of the active components and promoting the activation of molecules such as CO or NO. Pd is a promising component to current TWC formulations and behaves particularly well when compared with Pt and Rh-based catalysts for low-temperature oxidation of Co and hydrocarbon. However the effect of Pd-ceria interactions on the physicochemical properties of Pd and the redox properties of Ce is not elucidated yet. In order to know exactly about the metal-ceria interactions, the model study are expecting to give a better environment, resulting in the wide use of the surface science tools. The substrate was Si(100) wafer, on which Ta metal was sputtered as a thickness of 100nm. The CeO2 thin film of 30nm was deposited by using the magnetron sputtering. Spin coating and magnetron sputtering methods were used to make the Pd thin film layer. The prepared sample was investigated by in-situ XPS, AES, SEM and AFM analysis.

  • PDF

The Effect of Promoter on the SO2-resistance of Fe/zeolite Catalysts for Selective Catalytic Reduction of NO with Ammonia (NO의 암모니아 선택적 촉매환원반응을 위한 철 제올라이트 촉매의 내황성에 미치는 조촉매 효과)

  • Ha, Ho-Jung;Choi, Joon-Hwan;Han, Jong-Dae
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.153-163
    • /
    • 2015
  • The effects of H2O and residue SO2 in flue gases on the activity of the Fe/zeolite catalysts for low-temperature NH3-SCR of NO were investigated. And the addition effect of Mn, Zr and Ce to Fe/zeolite for low-temperature NH3-SCR of NO in the presence of H2O and SO2 was investigated. Fe/zeolite catalysts were prepared by liquid ion exchange and promoted Fe/zeolite catatysts were prepared by liquid ion exchange and doping of Mn, Zr and Ce by incipient wetness impregnation. Zeolite NH4-BEA and NH4-ZSM-5 were used to adapt the SCR technology for mobile diesel engines. The catalysts were characterized by BET, X-ray diffraction (XRD), SEM/EDS, TEM/EDS. The NO conversion at 200 ℃ over Fe/BEA decreased from 77% to 47% owing to the presence of 5% H2O and 100 ppm SO2 in the flue gas. The Mn promoted MnFe/BEA catalyst exhibited NO conversion higher than 53% at 200 ℃ and superior to that of Fe/BEA in the presence of H2O and SO2. The addition of Mn increased the Fe dispersion and prevented Fe aggregation. The promoting effect of Mn was higher than Zr and Ce. Fe/BEA catalyst exhibited good activity in comparison with Fe/ZSM-5 catalyst at low temperature below 250 ℃.

Catalytic Combustion of Methane over $AMnAl_{11}O_{19}$(A=La, Sr, Ba) and $CeO_2/LaAMnAl_{11}O_{19}$ ($AMnAl_{11}O_{19}$(A=La, Sr, Ba) 및 $CeO_2/LaAMnAl_{11}O_{19}$를 이용한 메탄의 촉매 연소)

  • Kim, Seongmin;Lee, Joon Yeob;Cho, In-Ho;Lee, Dae-Won;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.633-638
    • /
    • 2011
  • Mn substituted La, Sr or Ba-hexaaluminate were prepared by $(NH_4)_2CO_3$ co-precipitate method and calcined at $1,200^{\circ}C$ for 5 h. Catalysts were characterized by X-ray diffraction and $N_2$ physisorption and scanning electron microscope (SEM). Compared to $SrMnAl_{11}O_{19}$ and $BaMnAl_{11}O_{19}$, $LaMnAl_{11}O_{19}$ in which La located at mirror plane showed better crystallinity and high surface area, 13 $m^2/g$. $LaMnAl_{11}O_{19}$ revealed well developed plate-like structure which is characteristic structure of hexaaluminate. The catalytic activity of methane combustion increased in the following order: $LaMnAl_{11}O_{19}$ > $SrMnAl_{11}O_{19}$ > $BaMnAl_{11}O_{19}$ and was dependent on surface area of catalysts. 60 wt% $CeO_2/LaMnAl_{11}O_{19}$ calcined at $700^{\circ}C$ showed enhanced methane activity and methane was oxidized completely at low temperature ($700^{\circ}C$). It was confirmed that addition of ceria seems to be effective for the low and middle temperature combustion of methane. But, after calcination at high temperature of $1,200^{\circ}C$, it lost the promoting effect of ceria due to increase of ceria particle size and it had a limit to applying to the high temperature catalytic combustion.