Expression of a Manganese Peroxidase Gene (mnp5) from White rot fungus Phanerochaete chrysosporium in the Pichia pastoris

백색부후균 Phanerochaete chrysosporium에서 유래한 Manganese Peroxidase Gene(mnp5)의 Pichia pastoris에서의 이종발현

  • Lee, Jae-Won (Department of Forest Sciences, College of Agriculture & Life Sciences, Seoul National University) ;
  • Yang, In (Department of Forest Sciences, College of Agriculture & Life Sciences, Seoul National University) ;
  • Igarashi, Kiyohiko (Graduate School of Agriculture and Life Sciences, The University of Tokyo) ;
  • Samejima, Masahiro (Graduate School of Agriculture and Life Sciences, The University of Tokyo) ;
  • Choi, In-Gyu (Department of Forest Sciences, College of Agriculture & Life Sciences, Seoul National University)
  • 이재원 (서울대학교 농업생명과학대학 산림과학부) ;
  • 양인 (서울대학교 농업생명과학대학 산림과학부) ;
  • 五十嵐圭日子 (동경대학교 농업생명과학대학원) ;
  • 鮫島正浩 (동경대학교 농업생명과학대학원) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2005.05.16
  • Accepted : 2005.06.08
  • Published : 2005.07.25

Abstract

The manganese peroxidase (mnp5) from white-rot fungus Phanerochaete chrysosporium has been heterologously expressed in the methylotrophic yeast Pichia pastoris. The majority of the rMnP5 (recombinant MnP5) produced by P. pastoris exhibited an approximate molecular mass 45 kDa considerably larger than that of the predicting mnp5 due to two glycosylation sites of mnp5. After site direct mutation treatment, the effect of N-linked hyperglycosylation was examined by enzyme activity. Analysis by sodium dodesyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Coomassie Brilliant Blue (CBB) staining revealed a major protein band with a molecular mass of 37 kDa. Enzyme activity of M-rMnP5 (mutant recombinant MnP5) was similar to that of rMnP5, indicating that hyperglycosylation did not affect the active site. In this work, active mnp5 was successfully expressed in P. pastoris, suggesting that P. pastoris has potential capability of producing active heme-containing proteins.

백색부후균 Phanerochaete chrysosporium으로부터 유래한 Manganese peroxidase (mnp5)를 methylotrophic yeast인 Pichia pastoris에서 이종 발현을 하였다. 이종발현으로부터 얻어진 단백질은 클로닝으로부터 예상되어지는 분자량보다 높은 분자량인 45 kDa으로 나타났다. 이것은 mnp5가 가지고 있는 glycosylation site에 의한 것이며, N-linked hyperglycosylation이 효소 활성에 영향을 미치는지를 site direct mutation에 의해 확인하였다. Sodium dodesyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)와 Coomassie Brilliant Blue (CBB) 염색에 의해 분자량을 확인한 결과 약 37 kDa으로 나타났으며, 효소활성을 측정한 결과 glycosylation이 효소 활성에 영향을 미치지 않는 것으로 나타났다. 따라서 본 연구로부터 P. pastoris에서 mnp5의 이종발현이 성공적으로 이루어졌으며 이러한 결과로부터 heme을 포함하고 있는 단백질의 이종발현 생산의 가능성을 보여주었다.

Keywords

References

  1. 안세희, 최인규. 1998. 목질분해균에 의한 4,5,6-triguaiacol의 미생물 분해. 목재공학 26(3): 63-72
  2. 이수민, 구본욱, 이재원, 최돈하, 정의배, 최인규. 2004. 옥틸페놀(4-t-octylphenol)의 Basidioradulum molare와 Schizopora paradoxa에 의한 분해 및 에스트로겐성 저감 효과. 목재공학 32: 27-35
  3. 이수민, 박기령, 이성숙, 김명길, 최인규. 2005. 백색부후균 Polyporus brumalis에 의한 프탈산의 분해. 목재공학 33(1): 48-57
  4. 최인규, 안세희. 1998. 목질 분해균에 의한 pentachlorophenol의 미생물 분해, 목재공학 26(3): 53-62
  5. 최인규, 이재원, 최돈하. 2002. Monochlorophenol의 목질 분해균에 의한 분해 특성. 한국환경농학회지 21(4): 261-268
  6. Campbell, W. H. 2001. Structure and function of eukaryotic NAD(P)H: Nitrate reductase. Cell. Mol. Life Sci. 58: 194-204 https://doi.org/10.1007/PL00000847
  7. Carmen, R J, D. Cullen, and R. T. Lamar. 1994. Manganese Peroxidase of the White Rot Fungus Phanerochaete sotdidz. Appl. Environ. Microbiol. 60: 599- 605
  8. Cereghino, J. L. and J. M. Cregg. 2000. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol. Rev. 24: 45-66. https://doi.org/10.1111/j.1574-6976.2000.tb00532.x
  9. Conesa, A., C. A. M. J. van den Hondel, and P. J. Punt. 2000. Studies on the production of fungal peroxidases in Aspergillus niger. Appl. Environ. Microbiol. 66: 3018-3023
  10. Doyle, W. A. and A. T. Smith. 1996. Expression of lignin peroxidase H8 in Escherichia coli: Folding and activation of the recombinant enzyme with $Ca^{2+}$ and Heam. Biochem. J. 315: 15-19 https://doi.org/10.1042/bj3150015
  11. Forney, L. J., C. A. Reddy, and H. S. Pankratz. 1982. Ultrastructural localization of hydrogen peroxide production in ligninolytic Phsnerochssete chrysosporium cells. Appl. Environ. Microbiol. 44: 732-736
  12. Gachhui, R., A. Presta, D. F. Bentley, H. M. AbuSoud, R. McArthur, G. Brudvig, D. K. Ghosh, and D. J. Stuehr. 1996. Characterizatio of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris. J. Biol. Chem. 271: 20594-20602 https://doi.org/10.1074/jbc.271.34.20594
  13. Gellissen, G. 2000. Heterologous protein production in methylotrophic yeasts. Appl. Microbiol. Biotechnol. 54: 741-750 https://doi.org/10.1007/s002530000464
  14. Kersten, P. J., B. Kalyanaraman, K. E. Hammel, B. Reinhammar, and T. K. Kirk. 1990.Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxymenzenes. Biochem. J. 268: 475-480 https://doi.org/10.1042/bj2680475
  15. Kirk, T. K. and D. Cullen. 1998. Enzymology and molecular genetics of wood degradation by white-rot fungi. In Environmentally Friendly Technologies for the Pulp and Paper Industry. pp 273-307
  16. Leber, A., B. Hemmens, B. Klosch, W. Goessler, G. Raber, B. Mayer, and K. Schmidt. 1999. Characterization of recombinant human endothelial nitric-oxide synthase purified from the yeast Pichia pastoris. J. Biol. Chem. 274: 37658-37664 https://doi.org/10.1074/jbc.274.53.37658
  17. Lee, S. M. W. Koo, M. K. Kim, D. H. Choi, E. J. Hong, E. B. Jeung, and I. G. Choi. 2004. Biodegradation of dibutylpluhalate by white rot fungi and evaluation on its estrogenic activity. Enzym. Microbial Technol. 35: 417-423 https://doi.org/10.1016/j.enzmictec.2004.06.001
  18. Mertens, J. A., N. Shiraishi, and W. H. Campbell. 2000. Recombinant expression of molybdenum reductase fragment of plant nitrate reductase at high levels in Pichia pastoris. Plant Physiol. 123: 743-756 https://doi.org/10.1104/pp.123.2.743
  19. Skipper, L., W. H. Campbell, J. A. Mertens, and D. J. Lowe. 2001. Pre-steady-state kinetic analysis of recombinant Arabidopsis NADH Nitrate reductase. J. Bio. Chem. 276: 26995-27002 https://doi.org/10.1074/jbc.M100356200
  20. Stewart P., R. E. Whitwam, P.J. Kersten, D. Cullen, and M. Tien. 1996. Efficient expression of a Phanerochaete clirysospotium manganese peroxidase gene in Aspergillus oryzae. Appl. Environ. Microbiol. 62: 860-864
  21. Sundaramoorthy, M., K. Kishi, M. H. Gold, and T. L. Poulos. 1994. The Crystal Structure of Manganese Peroxidase from Phanerochaete cbrysosporium at 206-A Resolution. J. Bio. Chem. 269:32759-32767
  22. Whitwam, R. E., I. G. Gazarian, and M. Tien. 1995. Expression of fungal Mn peroxidase in E coli and refolding to yield active. Biochem. Biophys. Res. J. 216: 1013-1017 https://doi.org/10.1006/bbrc.1995.2721
  23. Yoshida M., T. Ohira, K. Igarashi, H. Nagasawa, K. Aida, B. M. Hallberg, C. Divne, T. Nishino, and M. Samejima. 2001. Production and characterization of recombinant Phanerochaete chrysosporium cellobiose dehydrogenase in the methylotrophic yeast Pichia pastoris. Biosci. Biotechnol. Biochem. 65: 2050-2057 https://doi.org/10.1271/bbb.65.2050