• Title/Summary/Keyword: Phanerochaete chrysosporium

Search Result 65, Processing Time 0.029 seconds

Protoplast Formation and Regeneration of the Wood-Rot Basidiomycete Phanerochaete chrysosporium (목재부후균인 Phanerochaete chrysosporium의 원형질체 생성 및 재생)

  • Jun, Sang-Cheol;Kim, Kyu-Joong
    • The Korean Journal of Mycology
    • /
    • v.23 no.4 s.75
    • /
    • pp.305-309
    • /
    • 1995
  • To investigate optimal conditions for the protoplast formation and regeneration of Phanerochaete chrysosporium, preparations of three enzymes were used to liberate protoplasts from its 20 hrs-old mycelium on cellophan membrane covered agar media. Novozym 234 alone with 0.6M sucrose was the most effective for isolation of protoplasts from the mycelium with 3hrs incubation time at $39^{\circ}C$ in shaking condition of 120 rpm. The poly-R medium stabilized with 0.6M mannitol was the best for regeneration of the protoplasts.

  • PDF

Accurate Delimitation of Phanerochaete chrysosporium and Phanerochaete sordida by Specific PCR Primers and Cultural Approach

  • Lim, Young-Woon;Baik, Keun-Sik;Chun, Jong-Sik;Lee, Kang-Hyun;Jung, Won-Jin;Bae, Kyung-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.468-473
    • /
    • 2007
  • White rot fungi, Phanerochaete chrysosporium and Phanerochaete sordida, have been mostly studied in a variety of industrial processes like biopulping and pulp bleaching as well as in bioremediation. Whereas P. sordida is widely distributed in the North Temperate Zone, P. chrysosporium is reported in the restricted area and hundreds of reports have been described from a few strains of P. chrysosporium, which are deposited at various fungal collections in the world. The isolates of two species are not easily discriminated because of their morphological and molecular similarity. Through the ITS sequence analyses, a region containing substantial genetic variation between the two species was identified. PCR amplification using two specific primers was successfully used to differentiate P. chrysosporium from P. sordida. These results were supported by cultural studies. The growth rates at $37^{\circ}C$ on PDA, MEA, and Cza and the microscopic features of conidia on PDA and YMA were also very useful to differentiate those two species.

Solid State Fermentation of Phanerochaete chrysosporium for Degradation and Saccharification of Lignocellulose (Phanerochaete chrysosporium의 고상발효를 통한 리그노셀룰로오즈 분해 및 당화)

  • Utomo, Romualdus N.C.;Lee, Eun-Kwang;Yun, Hyun Shik
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.96-102
    • /
    • 2017
  • The lignocellulose that is a major component of spent coffee ground was degraded and saccharified. To implement the spent coffee, after several pre-treatments, inoculation of Phanerochaete chrysosporium and solid-state fermentation were conducted. The optimal temperature of the enzymes (lignin peroxidase, manganese peroxidase, xylanase, laccase, and cellulase) for degradation of lignocellulose by P. chrysosporium was found. We also measured the maximum activity of enzymes (lignin peroxidase 0.15 IU/mL, manganese peroxidase 0.90 IU/mL, laccase 0.11 IU/mL, cellulase 5.87 IU/mL, carboxymethyl cellulase 9.52 IU/mL, xylanase 1.16 IU/mL) used for the process. As a result, 4.73 mg/mL of reduced sugar was obtained and 61.02% of lignin was degraded by solid state fermentation of P. chrysosporium on spent coffee ground.

Submerged Culture of Phanerochaete chrysosporium and Lignin Peroxidase Production (Phanerochaete chrysosporium의 액체 배양 및 Lignin Peroxidase 생산)

  • Park, Se-Keun;Jeong, Myoung-Sun;Kim, Yeong-Kwan
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.343-349
    • /
    • 2001
  • This study characterizes the growth of white rot fungi Phanerochaete chrysosporium IFO 31249) and lignin peroxidase(LiP) activity in different submerged culture media. P. chrysosporium was grown in the form of pellet of various sizes from a spore inoculum under shaking liquid culture condition. While the growth of mycelia was higher under the nitrogen-sufficient culture than under the nitrogen-limited culture, ligninase activity was relatively lower. The lignin peroxidase appeared in nitrogen-limited culture and was suppressed by excess nitrogen. High level(40U/l) of lignin peroxidase activity was obtained in the growth medium containing 1.5mM veratryl alcohol, a secondary metabolite of P. chrysosporium. Lignin peroxidase production was not observed under conditions of nitrogen sufficiency or in balanced media, suggesting that control parameters could increase the activity by manipulating the secondary metabolism.

  • PDF

A Study on Synthesis of Lignin Peroxidase and Degradation of Pentachlorophenol(PCP) by Phanerochaete chrysosporium (Phanerochaete chrysosporium에 의한 Lignin Peroxidase의 생성과 Pentachlorophenol(PCP)의 분해)

  • Choi, Sue-Hyung;Song, Eun;Gu, Man-Bock;Moon, Seung-Hyeon
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.223-230
    • /
    • 1998
  • Experiments for lignin peroxidase production have been conducted by aerobic fermentation of Phanerochaete chrysosporium under low shear rate and enriched oxygen environment. The result of flask cultures of white rot fungus indicated that high oxygen concentration and low shear force were essential for enhancement of lignin peroxidase production. Pentachlorophenol was readily degraded by lignin peroxidase produced in nutrient limited flask cultures. Polyurethane foam was fond to be an effective immobilization matrix of P. chrysosporium.

  • PDF

Shear Effects on Production of Lignin Peroxidase by Phanerochaete chrysosporium

  • Sang, Byeong-In;Kim, Yong-Hwan;Yoo, Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.26-31
    • /
    • 1996
  • Since biosynthesis of lignin peroxidase from Phanerochaete chrysosporium was known to be sensitive to shear, it is interesting to understand the effects of the shear sensitivity for the overproduction of lignin peroxidase. In stirred-tank fermentor, the shear-sensitivity in lignin peroxidase biosynthesis was quantified by using Kolmogorov length scale. It was found that agitation at 80$\mu$m Kolmogorov length scale is advantageous for the production of lignin peroxidase from P. chrysosporium. To overcome the shear sensitivity in lignin peroxidase biosynthesis caused by the agitation,P. chrysosporium was immobilized on various solid carriers. The nylon-immobilized P. chrysosporium was chosen in the present study as a way to overcome the shear sensitivity at the ranges of above 50$\mu$m Kolmogorov length scale. The adhesion force between immobilized cell and carrier can be predicted by thermodynamic approach and used as a criteria to select an adequate carrier materials for immobilization.

  • PDF

Mechanisms of Lignin Biodegradation by Ligninase, Phanerochaete Chrysosporium Burds

  • Hwang, Byung-Ho
    • Journal of Forest and Environmental Science
    • /
    • v.6 no.1
    • /
    • pp.45-60
    • /
    • 1989
  • 리그닌 생분해의 분해경로 및 매카니즘에 관한 연구가 최근 Kirk와 Higuchi 등에 의하여 활발히 연구되고 있다. 특히, Phanerochaete chrysosporium이 생산해내는 Lignlnase를 이용하여 매우 가치있는 연구 결과를 얻고 있다. 본 총설에서는 Kirk와 Higuchi의 허가를 얻어서 그들의 논문을 중심으로 리그닌의 중요한 결합 양식 별로 즉, ${\beta}$-O-4, ${\beta}$-5, ${\beta}$-1, ${\beta}$-6, 5-5 등의 결합 모델 화합물들의 분해경로 및 매카니즘에 관하여 조사 정리하였다.

  • PDF

A PAH degradation study by soil microorganisms (토양 미생물에 의한 PAH 분해 특성)

  • Jang Tae sik;Cho Daechul;Huh Nam Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2005.05a
    • /
    • pp.301-302
    • /
    • 2005
  • PAHs의 분해를 위해 Bacillus subtilis 와 Phanerochaete chrysosporium의 두 미생물을 사용하였고, 이들을 부착시킬 담체로 코르크와 톱밥를 선정하여 미생물을 접종시켰다. Phenanthrene 분해의 경우, 반응 초기에는 분해 속도가 매우 빠르지만 반응 12일째 분해 속도가 떨어졌다. 분해 속도는 1)톱밥에 담지한 Bacillus subtilis, 2)코르크에 담지한 Bacillus subtilis, 3)톱밥에 담지한 Phanerochaete chrysosporium, 4)코르크에 담지한 Phanerochaete chrysosporium의 순으로 나타났다.

  • PDF

Biodegradation of PAHs (Polycyclic Aromatic Hydrocarbon) Using Immobilized Cells of Phanerochaete chrysosporium (고정화 Phanerochaete chrysosporium을 이용한 다환 방향족 화합물의 분해)

  • 서윤수;류원률;김창준;장용근;조무환
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.247-253
    • /
    • 2000
  • This study was aimed to enhance polycyclic aromatic hydrocarbon(PAHS) biodegradation rate by repeated-batch treatment using immobilized cells of Phanerochaete chrysosporium. In the repeated-batch operations with 30 mg/L of pyrene the maximum degradation rate was 6.58 mg/L day. As the number of batches increased the concentration of immobilized cells significantly decreased and the degradation rate and specific acitivity gradually increased to a maximum value and then decreased. To have PAH degradation activity and cell mass recovered one batch of cultivation using the growth medium instead of the PAH-degrading medium was carried in the course of repeated-batch operations. This maximum degradation rates of pyrene and anthracene were 4.29 and 4.46 mg/L$.$day respectively. Overall the rate of PAH degradation could be enhanced 2.5-30 folds by using immobilized cells compared to the case of using suspended cells.

  • PDF

Color Removal from Disperse Dye Solution Using White Rot Fungi (백색부후균을 이용한 분산염료용액의 색 제거)

  • 이현욱;손동찬;임동준
    • Textile Coloration and Finishing
    • /
    • v.12 no.1
    • /
    • pp.32-43
    • /
    • 2000
  • Batch culture system and continuous culture systems were used to investigate the removal of disperse dye using white rot fungi. White rot fungi used in the study were Coriolus hirsutus IFO 4917, Lenzites betulina IFO 6266, Coriolus versicolor IFO 30340 and Phanerochaete chrysosporium IFO 31249. The results of the batch culture experiment showed that white rot fungi used in this study had excellent dye removal abilities. Phnerochete chrysosporium IFO 31249 was especially effective on the removal of disperse dyes. And continuous treatment of disperse red 60 was studied under two type of reactor using Phanerochaete chrysosporium IFO 31249. The removal efficiency of disperse red 60 for immobilized Phanerochaete chrysosporium IFO 31249 in continuous reactor with vertical matrix was increased 1.3 fold in $1.4\;hr^{-1}$ dilution rate when compared with continuous reactor without vertical matrix.

  • PDF