• Title/Summary/Keyword: manganese peroxidase

Search Result 94, Processing Time 0.027 seconds

Partial Cloning of Genes for Lignin Degrading Enzymes in Trametes versicolor (구름버섯에서 리그닌 분해효소 유전자들의 클로닝)

  • 김용호;정수진;김선경;송홍규;최형태
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.201-205
    • /
    • 2003
  • Laccase, lignin- and manganese peroxidase are implicated in the lignin degradation. The nucleotide sequences of four copper-binding domains in fungal laccases, and heme-binding domains of lignin- and manganese peroxidases are well conserved, and therefore these short fragments can be used for the PCR for the gene amplification. We synthesized several PCR primers according to their sequences, and run PCR to amplifiy the lignin degrading genes of Trametes versicolor isolated in Korea. PCR products were cloned with pGEM-T vector in order to determine their nucleotide sequences. A laccase fragment (1.3 kb) showed 65-97% homologies, lignin peroxidase fragment (185 bp) showed 80-95% homologies, and manganese peroxidase fragment (443 bp) showed 61-83% homologies when compared with other white-rot fungal enzymes.

Polymerization and Depolymerization of Lignins by White-Rot Fungi(I)-Degradation of Lignosulfonate by Lignin-degrading Fungi- (백색부후균에 의한 리그닌의 중합화와 탈중합화 (제1보)-리그닌분해균에 의한 Lignosulfonate의 분해-)

  • 정현채;김병수;박종열
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.4
    • /
    • pp.64-72
    • /
    • 1997
  • 백색부후균에 의한 리그닌의 분해양상을 검토하기 위해 리그닌 분해능이 우수하고 laccase활성이 높은 LKY-7 및 C. versicolor-13 균주와 manganese peroxidase 활성은 비교적 높으나 laccase활성이 전혀 나타나지 않는 LSK-27 균주로 lignosulfonate를 처리하였다. LKY-7 과 C. versicolor-13 균주에서는 lignosulfonate의 중합화 현상이 관찰되었으며 중합화는 laccase 활성 과 비례하는 것으로 나타났다. LSK-27 균주에서는 lignosulfonate의 고분자 영역이 분해되면서 탈중합화가 일어났으며 리그닌 분해 효소로는 manganese peroxidase만 검출되었다. 보조기질로 glucose를 첨가한 결과, LKY-7 균주에서는 laccase 활정이 각소하면서 중합화 현상이 어느 정도 감소하였으나 C. versicolor-13 균주는 laccase 활성의 증가와 함께 중합화도 촉진되는 것으로 나타났다. 또한 LSK-27 균주에서도 glucose 첨가에 의해 manganese peroxidase 활성이 증가되면서 lignosulfonate의 중합화가 관찰되었다. lignosulfonate 중합화에는 laccase 뿐만 아니라 manganese peroxidase도 관여하며 보조기질로서 탄소원의 종류도 영향을 미칠것으로 검토되었다.

  • PDF

Cloning of a Manganese Peroxidase cDNA Gene Repressed by Manganese in Trametes versicolor

  • Kim Yongho;Yeo Sumin;Kum Joohee;Song Hong-Gyu;Choi Hyoung T.
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.569-571
    • /
    • 2005
  • White-rot fungi have the following enzyme systems for lignin degradation: laccase, lignin peroxidase and manganese peroxidase. There are other types of peroxidases related to lignin degradation, one of which we have cloned a cDNA gene of manganese-repressed peroxidase (MrP) in Trametes versicolor isolated in South Korea. The mrp transcript level has been decreased by $1{\mu}M\;of\;Mn^{2+}$.

Production of Lignin Degrading Enzymes and Decolorization of Dye Compounds by White-rotting Fungi Coriolus hirsutus LD-1 (백색부후균 Coriolus hirsutus LD-1의 리그닌분해효소 활성과 염료탈색에 관한 연구)

  • Nam, Eun-Sook;Ha, Sang-Woo;Park, Shin-In
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.211-216
    • /
    • 2006
  • The present research was undertaken to investigate the activities of ligninolytic enzymes and dye-decolorization capabilities of white-rotting fungi Coriolus hirsutus LD-1. The isolated white-rotting fungi (Coriolus hirsutus LD-1) produced laccase (16,388.9 U/L) and manganese-dependent peroxidase (19.81 U/L) but it did not produce lignin peroxidase. When the isolated fungi was incubated with the treatment of dyes for 8 days, the rates of decolorization of remazol brilliant blue R and bromophenol blue were 70.2% and 98%, respectively. The activity for manganese-dependent peroxidase was low, whereas that for laccase was very high. Moreover, the laccase was more effective to decolor when compared to manganese-dependent peroxidase. The results suggested that laccase of Coriolus hirsutus LD-1 might be playing an important role in the decolorization of the dyes.

The Selective Visualization of Lignin Peroxidase, Manganese Peroxidase and Laccase, Produced by White Rot Fungi on Solid Media

  • Ryu, Won-Youl;Jang, Moon-Yup;Cho, Moo-Hwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.130-134
    • /
    • 2003
  • A visual method for the selective screen Eng of lignin degrading enzymes, produced by white rot fungi (WRF), was investigated by the addition of coloring additives to solid media. Of the additives used in the enzyme production media, guaiacol and RBBR could be used for the detection of lignin peroxidase (LiP), manganese peroxidase (MnP) and lactase. Syringaldazine and Acid Red 264 were able for the detection of both the MnP and lactase, and the LiP and laccase, respectively, and a combination of these two additives was able to detect each of the ligninases produced by the WRF on solid media.

Screening and Production of Manganese Peroxidase from Fusarium sp. on Residue Materials

  • Huy, Nguyen Duc;Tien, Nguyen Thi Thanh;Huyen, Le Thi;Quang, Hoang Tan;Tung, Truong Quy;Luong, Nguyen Ngoc;Park, Seung-Moon
    • Mycobiology
    • /
    • v.45 no.1
    • /
    • pp.52-56
    • /
    • 2017
  • In this study, we report the manganese peroxidase production ability from a Fusarium sp. strain using an inexpensive medium of agriculture residues of either rice straw or wood chips as carbon source. The highest manganese peroxidase activity on rice straw medium and on wood chips was 1.76 U/mL by day 9 and 1.91 U/mL by day 12, respectively.

Correlative Production of Mn-Peroxidase and Glucose Oxidase Depending on the Culture Condition of Schizopora paradoxa (좀구멍버섯균의 배양조건에 따른 Mn-Peroxidase와 Glucose Oxidase의 생성조절)

  • Lee, Sang-Yoon;Shin, Hyeon-Dong;Kim, Kyu-Joong
    • The Korean Journal of Mycology
    • /
    • v.22 no.4
    • /
    • pp.325-331
    • /
    • 1994
  • White-rot fungus, Schizopora paradoxa did not produce Mn-peroxidase and glucose oxidase without manganese. But, in high concentration of manganese (40 ppm), the activities of both enzymes were higher than those in basal concentration of manganese (11.15 ppm). Unlike the activities of the enzymes, mycelial mass was the same level as the control culture (11.15 ppm manganese) through out the culture period, depending on the concentration of manganese. The same experiments were carried out for the effect of copper and veratryl alcohol added to the culture. The results were not consistent dependent on the concentration of copper and veratryl alcohol, respectively. The involvement of cAMP in the correlative production of MNP and GOX was investigated. In this study, addition of atropine to the culture resulted in a concomitant inhibition of production of MNP and GOX, depending on the concentration of inhibitor added.

  • PDF

Heterologous Expression of Phanerochaete chrysoporium Glyoxal Oxidase and its Application for the Coupled Reaction with Manganese Peroxidase to Decolorize Malachite Green

  • Son, Yu-Lim;Kim, Hyoun-Young;Thiyagarajan, Saravanakumar;Xu, Jing Jing;Park, Seung-Moon
    • Mycobiology
    • /
    • v.40 no.4
    • /
    • pp.258-262
    • /
    • 2012
  • cDNA of the glx1 gene encoding glyoxal oxidase (GLX) from Phanerochaete chrysosporium was isolated and expressed in Pichia pastoris. The recombinant GLX (rGLX) produces $H_2O_2$ over 7.0 nmol/min/mL using methyl glyoxal as a substrate. Use of rGLX as a generator of $H_2O_2$ improved the coupled reaction with recombinant manganese peroxidase resulting in decolorization of malachite green up to $150{\mu}M$ within 90 min.

The effect of the dissolved oxygen concentration on the production of manganese peroxidase by Phaenerochaete chrysosporium

  • Choe, Su-Hyeong;Gu, Man-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.171-174
    • /
    • 2000
  • The effect of the dissolved oxygen (DO) concentration on the production of manganese peroxidase by Phaenerochaete chrysosporium was studied in the immobilized reactor system. The oxygen levels significantly affected the production of manganese peroxidase (MnP) as well as that of $H_2O_2$. It is known that a high oxygen level is required to produce this enzyme. In this study, however, higher DO concentrations above a critical DO concentration inhibited MnP production. It is thought that a greater $H_2O_2$ production seen with higher DO concentrations caused adverse effects on the MnP production. On the other hand, with lower DO concentrations, $H_2O_2$ did not accumulate enough to stimulate MnP production.

  • PDF

Biodegration of Pentachlorophenol by White Rot Fungi under Ligniolytic and Nonligninolytic Conditions

  • Ryu, Won-Ryul;Shim, Seong-Hoon;Jang, Moon-Yup;Heon, Yeong-Joong;Oh, Kwang-Keun;Cho, Moo-Hwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.3
    • /
    • pp.211-214
    • /
    • 2000
  • The roles of lignin peroxidase, manganese peroxidase, and laccase were inverstigated in the biodegration of pentachlorphenol (PCP) by several which rot fungi. The disappearance of pentachlorophenol from cultures of wild type strains, P. chrysosporium, Trametes sp. and of pentachlorophenol from cultures of wild type strains, P. cheysocporium, Trametes sp. and Pleurotus ap., was observed. The activities of mangnese peroxidase and laccase was detected in Trametes sp. and pleurotus sp. cultures. However, the activities showed that PCP was degraded under ligninolytic as well as nonligninoytic condicationg that lignin peroxidase, manganese peroxidase, and laccase are not essential in the biodegradation of PCP by white rot fungi.

  • PDF