Fully Automatic Segmentation Method of Pathological Periventricular White Matter Changes Using Morphological Features

  • Cho Ik-Hwan (Department of Electronic Engineering, College of Engineering, Inha University) ;
  • Song In-Chan (Department of Radiology, Seoul National University Hospital) ;
  • Oh Jung-Su (Interdisciplinary Program of Biomedical Engineering, Seoul National University) ;
  • Jeong Dong-Seok (Department of Electronic Engineering, College of Engineering, Inha University)
  • Published : 2005.12.01

Abstract

Age-related White Matter Changes (WMC) on Magnetic Resonance Imaging (MRI) are known to appear frequently in Multiple sclerosis (MS) and Alzheimer's disease and to be related to cognitive impairment. The characterization of these WMC is very important to the study of psychology and aging. These changes consist of periventricular and subcortical types, however it is difficult to detect and segment WMC using only intensity-based methods, because their intensity, level IS similar to th~t of the gray matter (GM). In this paper, we propose a new method of segmenting periventricular WMC using K-means clustering and morphological features.

Keywords

References

  1. P. Sullivan, R. Pary, F. Telang, 'Risk factors for white matter changes detected by magnetic resonance imaging in the elderly', Stroke, Vol. 21 pp. 1424 -1428, 1990 https://doi.org/10.1161/01.STR.21.10.1424
  2. J. V. Swieten, S. Staal, L. Kappelle, M. Derix and J. V. Gijn, 'Are white matter lesions directly associated with cognitive impairment inpatients with lacunar infarcts?', J. Neurol, Vol. 243, No.2, pp.196-200, 1996 https://doi.org/10.1007/BF02444014
  3. C. DeCarli, B. Miller, G. Swan, T. Reed, P. Wolf and D. Carmelli, 'Cerebrovascular and Brain Morphologic Correlates of Mild Cognitive Impairment in the National Heart, Lung, and Blood Institute Twin Study', Arch. Neurol., Vol. 58, pp. 643-647, 2001 https://doi.org/10.1001/archneur.58.4.643
  4. S. Gupta, M. Naheedy, J. Young, M. Ghobrial, F. Rubino, W. Hindo, 'Periuentricular white matter changes and dementia. Clinical, neuropsychological, radiological, and pathological correlation', Arch Neurol., Vol.45, pp. 637-641, 1988 https://doi.org/10.1001/archneur.1988.00520300057019
  5. D. Snowdon, S. Kemper, J. Mortimer, L. Greiner, D. Wekstein and W. Markesbery, 'Linguistic ability in early life and cognitive function and Alzheimer's disease in late life: Findings from the Nun Study', Journal of the American Medical Association, Vol. 275, pp. 528-532, 1996 https://doi.org/10.1001/jama.275.7.528
  6. H. Wolf, G. Ecke, S. Bettin, J. Dietrich and H. Gertz, 'Do white matter changes contribute to the subsequent development of dementia in patients with mild cognitive impairment? A longitudinal study', International Journal of Geriatric Psychiatry, Vol. 15, pp. 803-812, 2000 https://doi.org/10.1002/1099-1166(200009)15:9<803::AID-GPS190>3.0.CO;2-W
  7. L. Truyen, J. V. Waesberghe, M. V. Walderveen, B. V. Oosten, C. Polman, O. Hommes, H. Ader and F. Barkhof, 'Accumulation of hypointense lesions ('black holes') on T1 spin-echo MRI correlates with disease progression in multiple sclerosis', Neurology, Vol. 47, pp. 1469-1476, 1996 https://doi.org/10.1212/WNL.47.6.1469
  8. M. V. Walderveen, F. Barkhof, H. ommes, C. Polman, H. Tobi, S. Frequin and J. Valk, 'Correlating MRI and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short-TR/short-TE (T1- weighted) spin-echo images', Neurology, Vol. 45, pp. 1684-1690, 1995 https://doi.org/10.1212/WNL.45.9.1684
  9. F. Pannizzo, M.J.B. Stallmeyer, J. Friedman, R.J. Jennis, J. Zabriskie, C. Pland, R. Zimmerman, J.P. Whalen, and P.T. Cahill, 'Quantitative MRI studies for assessment of multiple sclerosis', Magnetic Resonance in Medicine, Vol. 24 pp. 90-99, 1992 https://doi.org/10.1002/mrm.1910240110
  10. S. Warfield, 'Fast k-NN classification for multichannel image data', Pattern Recog. Lett., Vol. 17 No.7, pp. 713-721,1996 https://doi.org/10.1016/0167-8655(96)00036-0
  11. N. A. Mohamed, M. N. Ahmed and A. A. Farag, 'Modified fuzzy C-mean in medical image segmentation', Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'99), Vol. 6, pp. 3429-3432, March 1999
  12. S. Z. Selim and M. A. Ismail, 'K-means-type algorithms', IEEE Trans. Pattern Anal. Machine Intell., Vol. 6, pp. 81-87, Jan. 1984 https://doi.org/10.1109/TPAMI.1984.4767478
  13. E. Ardizzone, R. Pirrone, O. Gambino and D. Peri, 'Two channels fuzzy c-means detection of multiple sclerosis lesions in multispectral MR images', Image Processing., International Conference on, Vol.2, pp. 345-348, 2002
  14. M. Joshi, J. Cui, K. Doolittle, S. Joshi, D. V. Essen, L. Wang and Michael I. Miller, 'Brain Segmentation and the Generation of Cortical Surfaces', NeuroImage, Vol. 9, Iss. 5, pp. 461-476, May 1999 https://doi.org/10.1006/nimg.1999.0428
  15. N. Otsu, 'A threshold selection method from gray-level histogram', IEEE Transactions on System, Man, and Cybernetics, SMC-8, pp. 62-66, 1978
  16. R. Adams and L. Bischof, 'Seeded region growing', IEEE Trans. Pattern Anal. Machine Intell., Vol. 16, pp. 641-647, 1994 https://doi.org/10.1109/34.295913
  17. M. Styner, C. Brechbuhler, G. Szekely and G. Gerig, 'Parametric estimate of intensity inhomogeneities applied to MRI', IEEE Transactions on Medical Imaging, Vol. 19, Issue. 3, Mar 2000, pp. 153-165 https://doi.org/10.1109/42.845174
  18. M. G. Ballester, A. P. Zisserman and M. Brady, 'Estimation of the partial volume effect in MRI', Medical Image Analysis, Vol. 6, Iss. 4, pp. 389-405, Dec. 2002 https://doi.org/10.1016/S1361-8415(02)00061-0
  19. W. K. Pratt, Chapter 12.9. Multispectral Image Enhancement, Digital Image Processing, New York: Wiley, 1978
  20. H. S-Zadeh, J. P. Windham, D. J. Peck and A. E. Yagle, 'A Comparative Analysis of Several Transformations for Enhancement and Segmentation of Magnetic Resonance Image Scene Sequences', IEEE Transactions on Medical Imaging, Vol. 11, No.3, pp. 302-318, 1992 https://doi.org/10.1109/42.158934
  21. R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley Publishing Company, Inc., 1992
  22. D. W. Shattuck and R. M. Leahy, 'BrainSuite: An automated cortical surface identification tool', Medical Image Analysis, Vol. 6, Iss. 2, pp. 129-142, June 2002 https://doi.org/10.1016/S1361-8415(02)00054-3
  23. D. E. Rex, J Q. Ma and A. W. Toga, 'The LONI Pipeline Processing Environment', NeuroImage, Vol. 19, Iss. 3, pp. 1033-1048, July 2003 https://doi.org/10.1016/S1053-8119(03)00185-X
  24. J. Sled, A. Zijdenbos, A. Evans, 'A nonparametric method for automatic correction of intensity nonuniformity in MRI data', IEEE Transactions on Medical Imaging, Vol. 7, Issue. 1, pp. 87-97, Feb. 1998