DOI QR코드

DOI QR Code

Study on the Silicon Nano-needle Structure for Nano floating Gate Memory Application

나노 부유 게이트 메모리 소자 응용을 위한 실리콘 나노-바늘 구조에 관한 연구

  • 정성욱 (성균관대학교 정보통신공학부) ;
  • 유진수 (성균관대학교 정보통신공학부) ;
  • 김영국 (성균관대학교 정보통신공학부) ;
  • 김경해 (성균관대학교 정보통신공학부) ;
  • 이준신 (성균관대학교 정보통신공학부)
  • Published : 2005.12.01

Abstract

In this work, nano-needle structures ate formed to solve problem, related to low density of quantum dots for nano floating gate memory. Such structures ate fabricated and electrical properties' of MIS devices fabricated on the nano-structures are studied. Nano floating gate memory based on quantum dot technologies Is a promising candidate for future non-volatile memory devices. Nano-structure is fabricated by reactive ion etching using $SF_6$ and $O_2$ gases in parallel RF plasma reactor. Surface morphology was investigated after etching using scanning electron microscopy Uniform and packed deep nano-needle structure is established under optimized condition. Photoluminescence and capacitance-voltage characteristics were measured in $Al/SiO_2/Si$ with nano-needle structure of silicon. we have demonstrated that the nano-needle structure can be applicable to non-volatile memory device with increased charge storage capacity over planar structures.

Keywords

References

  1. R. Bez and A. Pirovano, 'Non-volatile memory technologies: emerging concepts and new materials', Materials Science in Semiconductor Processing, Vol. 7, No. 4-6, p. 349, 2004
  2. W. D. Brwon and J. E. Brewer, 'Nonvolatile Semiconductor Memory Technology', IEEE Press, New York, p. 156, 1998
  3. G. Molas, Barbara De Salvo, Gerard Ghibaudo, D. Mariolle, A. Toffoli, N. Buffet, R. Puglisi, S. Lombardo, and S. Deleonibus, 'Single electron effects and structural effects in ultrascaled silicon nanocrystal floatinggate memories', IEEE Transactions on Nanotechnology, Vol. 3, No.1, p. 42, 2004
  4. H. A. R. Wegener, 'Endurance model for textured poly floating gate memories', Technical Digest of the 1984 IEEE IEDM, Paper 17.7, p. 480, 1984
  5. D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Boker, and C. Hu. 'FinFET - A self-aligned double-gate MOSFET scalable to 20 nm', IEEE Transactions on Electron Devices, Vol. 47, No. 12, p. 2320, 2000
  6. J. Kretz, L. Dreeskomfeld, J. Hartwich, and W. Rosner, '20 nm electron beam lithography and reactive ion etching for the fabrication of double gate FinFET devices', Microelectronic Engineering, Vol. 67, No.1, p. 763, 2003
  7. Chang L. L., Choi Y. K., Ha D. W., et al., 'EXtremely scaled silicon nano-CMOS devices', Proceedings of the IEEE, Vol. 91, No. 11, p. 1860, 2003
  8. M. Sugawara, 'Plasma Etching', Oxford University Press, New York, p. 180, 1998
  9. H. Jansen, M. de Boer, J Burger, R. Legtenberg, and M. Elwenspoek, 'The black silicon method. II : The effect of mask material and loading on the reactive ion etching of deep silicon trenches', Microelectronic Engineering, Vol. 27, No. 1-4, p. 475, 1995