DOI QR코드

DOI QR Code

철근 콘크리트 특수 모멘트 골조 건물의 비탄성 동적 요구값

Inelastic Dynamic Demands of a RC Special Moment Frame Building

  • 발행 : 2005.10.01

초록

건축 구조물의 내진 설계는 탄성 정적 방법에 기초하고 있으나, 강진시 구조물의 실제 거동은 비탄성 동적이기 때문에 설계 규준의 적합성을 판단하기 위해서는 비탄성 동적 해석이 요구된다. 본 논문에서는 철근 콘크리트 특수 모멘트 저항 골조 건물을 선택하여 IBC 2003에 따라 설계한 후, 선택된 부재들의 최대 소성 회전, 소산 에너지를 구하여, 건물의 비탄성 거동이 규준에서 의도한 거동을 보이는 지를 검토함과 동시에 층간변위률 요구값을 구하여 설계 한도를 만족하는 지를 조사하였다. 더불어 비횡력 저항 시스템인 내부 모멘트 저항 골조의 해석시 포함 여부의 영향도 함께 조사하였다. 해석 결과 IBC 2003에 의해 설계된 건물은 규준이 의도한 비탄성 거동을 보여주었으며 층간변위률 또한 설계한도를 만족하였다. 그리고, 내부 모멘트 저항 골조는 지진 해석 결과에 중요한 영향을 미치므로 해석 모델에 반드시 포함되어야 함을 알수 있었다.

Seismic design of a building is usually performed by using the linear static procedure. However, the actual behavior of the building subjected to earthquake is inelastic and dynamic in nature. Therefore, inelastic dynamic analysis is required to evaluate the safety of the structure designed by the current design codes. For the validation, a RC special moment resisting frame building was chosen and designed by IBC 2003 representing new codes. Maximum plastic rotation and dissipated energy of some selected members were calculated for examining if the inelastic behavior of the building follows the intention of the code, and drift demand were calculated as well for checking if the building well satisfies the design drift limit. In addition, the effect of including internal moment resisting frames (non lateral resisting system) on analyses results was investigated. As a result of this study, the building designed by IBC 2003 showed the inelastic behavior intended in the code and satisfied the design drift limit. Furthermore, the internal moment resisting frames should be included in the analytical model as they affect the results of seismic analyses significantly.

키워드

참고문헌

  1. IBC, International Building Code, International Code Council, Inc., Falls Church, Virginia, 2003, 756pp
  2. UBC, Uniform Building Code, International Conference Building Officials, Whittier, California, 1994
  3. Hueste, M.B.D. and Wight, J.K., 'Evaluation of a Four Story Reinforced Concrete Building Damaged during the Northridge Earthquake,' Earthquake Spectra, Vol. 13, No. 3, 1997, pp. 387-414 https://doi.org/10.1193/1.1585954
  4. Kim, T. W., 'Performance Assessment of Reinforced Concrete Strucctural Walls for Seismic Load', Ph.D Dissertation, University of Illinois at Urbana Champaign, 2004, 191pp
  5. ACI 318 Committee, Building Code Requirements for Structural Concrete (ACI 318 02) and Commentary (ACI 318R 02), American Concrete Institute, Farmington Hills, Michigan, 2002, 443pp
  6. Prakash, V., Powell, G. and Campbell, S., 'DRAIN 2DX base program description and user guide - version 1.10,' Report no. UCB/SEMM 93/17 and 93/18, Structural Eng. Mechanics and Materials, Dept. of Civil Eng., Univ. of California, Berkeley, California, 1993, 90pp
  7. Somerville, P., N. Smith, S. Puntamurthula and J. Sun, 'Development of Ground Motion Time Histories for Phase 2 of the FEMA/SAC Steel Project,' Background Document, Report No. SAC/BD 97/04, 1997
  8. Foutch, D.A., Shi, S. and Yun, S Y., 'Element 10: A stiffness and strength degrading element developed for the SAC steel program,' distributed with DRAIN 2DX by the National Information Service for Earthquake Engineering, available from http://nisee.berkeley.edu/software/drain2dx/, 2003
  9. Foutch, D.A. and Yun, S Y., 'Modeling of Steel Moment Frames for Seismic Loads,' Journal of Constructional Steel Research, Vol. 58, 2002, pp. 529-564 https://doi.org/10.1016/S0143-974X(01)00078-5
  10. FEMA 355F, State of the Art Report on Performance Prediction and Evaluation of Steel Moment Frame Buildings, Federal Emergency Management Agency, Washington, D.C., 2000