Species-Specific Cleavage by RNase E-Like Enzymes in 5S rRNA Maturation

  • RYOU SANG-MI (Department of Life Science, Chung-Ang University) ;
  • KIM JONG-MYUNG (Department of Life Science, Chung-Ang University) ;
  • YEOM JI-HYUN (Department of Life Science, Chung-Ang University) ;
  • KIM HYUN-LI (Department of Life Science, Chung-Ang University) ;
  • GO HA-YOUNG (Department of Life Science, Chung-Ang University) ;
  • SHIN EUN-KYOUNG (Department of Life Science, Chung-Ang University) ;
  • LEE KANGSEOK (Department of Life Science, Chung-Ang University)
  • Published : 2005.10.01

Abstract

Previous work has identified a Streptomyces coelicolor gene, rns, encoding a 140 kDa protein (RNase ES) that exhibits the endoribonucleolytic cleavage specificity characteristic of RNase E and confers viability on and allows the propagation of E. coli cells lacking RNase E. Here, we identify a putative S. coelicolor 9S rRNA sequence and sites cleaved by RNase ES. The cleavage of the S. coelicolor 9S rRNA transcript by RNase ES resulted in a 5S rRNA precursor (p5S) that had four and two additional nucleotides at the 5' end and 3' ends of the mature 5S rRNA, respectively. However, despite the similarities between RNase E and RNase ES, these enzymes could accurately process 9S rRNA from just their own bacteria, indicating that these ancient enzymes and the rRNA segments that they attack appear to have co-evolved.

Keywords

References

  1. Bentley, S. D., K. F. Chater, A. M. Cerdeno- Tarraga, G. L. Challis, N. R. Thomson, K. D. James, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147 https://doi.org/10.1038/417141a
  2. Carpousis, A. J., G. Van Houwe, C. Ehretsmann, and H. M. Krisch. 1994. Copurification of E. coli RNase E and PNPase: Evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 76: 889-900 https://doi.org/10.1016/0092-8674(94)90363-8
  3. Chater, K. F. 1993. Genetics of differentiation in Streptomyces. Annu. Rev. Microbiol. 47: 685-713 https://doi.org/10.1146/annurev.mi.47.100193.003345
  4. Coburn, G. A. and G. A. Mackie. 1999. Degradation of mRNA in Escherichia coli: An old problem with some new twists. Prog. Nucl. Acid Res. Mol. Biol. 62: 55-108 https://doi.org/10.1016/S0079-6603(08)60505-X
  5. Condon, C., D. Brechemier-Baey, B. Beltchev, M. Grunberg-Manago, and H. Putzer. 2001. Identification of the gene encoding the 5S ribosomal RNA maturase in Bacillus subtilis: Mature 5S rRNA is dispensable for ribosome function. RNA 7: 242-253 https://doi.org/10.1017/S1355838201002163
  6. Ghora, B. K. and D. Apirion. 1978. Structural analysis and in vitro processing to p5 rRNA of a 9S RNA molecule isolated from an me mutant of E. coli. Cell 15: 1055-1066 https://doi.org/10.1016/0092-8674(78)90289-1
  7. Gurevitz, M., S. K. Jain, and D. Apirion. 1983. Identification of a precursor molecule for the RNA moiety of the processing enzyme RNase P. Proc. Natl. Acad. Sci. USA 80: 4450-4454
  8. Hopwood, D. A., K. F. Chater, and M. J. Bibb. 1995. Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. Biotechnology 28: 65-102
  9. Jacobson, A. B. and M. Zuker. 1993. Structure analysis by energy dot plot of a large mRNA. J. Mol. Biol. 233: 261-269 https://doi.org/10.1006/jmbi.1993.1504
  10. Jger, S., O. Fuhrmann, C. Heck, M. Hebermehl, E. Schiltz, R. Rauhut, et al. 2001. An mRNA degrading complex in Rhodobacter capsulatus. Nucl. Acids Res. 29: 4581-4588 https://doi.org/10.1093/nar/29.22.4581
  11. Kieser, T., M. J. Bibb, K. F. Chater, M. J. Butter, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Centre, Norwich, U.K
  12. Kim, C.-Y., H.-J. Park, and E.-S. Kim. 2003. Heterologous expression of hybrid type 2 polyketide synthase system in Streptomyces species. J. Microbiol. Biotechnol. 13: 819-822
  13. Kim, E., H. Kim, S.-P. Hong, K. H. Kang, Y. H. Kho, and Y.-H. Park. 1993. Gene organization and primary structure of a ribosomal RNA gene cluster from Streptomyces griseus subsp. grise us. Gene 132: 21-31 https://doi.org/10.1016/0378-1119(93)90510-A
  14. Lee, E.-J., Y.-H. Cho, H.-S. Kim, and J.-H. Roe. 2004. Identification of ${\sigma}^{B}$-dependent promoters using consensus-directed search of Streptomyces coelicolor genome. J. Microbiol. 42: 147-151
  15. Lee, K., S. Varma, J. SantaLucia Jr., and P. R. Cunningham. 1997. In vivo determination of RNA structure-function relationships: Analysis of the 790 loop in ribosomal RNA. J. Mol. Biol. 269: 732- 743 https://doi.org/10.1006/jmbi.1997.1092
  16. Lee, K., J. A. Bernstein, and S. N. Cohen. 2002. RNase G complementation of me null mutation identifies functional interrelationships with RNase E in Escherichia coli. Mol. Microbiol. 43: 1445-1456 https://doi.org/10.1046/j.1365-2958.2002.02848.x
  17. Lee, K. and S. N. Cohen. 2003. A Streptomyces coelicolor functional ortholog of E. coli RNase E shows shuffling of catalytic and PNPase binding domains. Mol. Microbiol. 48: 349-360 https://doi.org/10.1046/j.1365-2958.2003.03435.x
  18. Li, Z. and M. P. Deutscher. 1995. The tRNA processing enzyme RNase T is essential for maturation of 5S rRNA. Proc. Natl. Acad. Sci. USA 92: 6883-6886
  19. Li, Z., S. Pandit, and M. P. Deutscher. 1999. RNase G (CafA protein) and RNase E are both required for the 5' maturation of 16S ribosomal RNA. EMBO J. 18: 2878-2885 https://doi.org/10.1093/emboj/18.10.2878
  20. Li, Z. and M. P. Deutscher. 2002. RNase E plays an essential role in the maturation of Escherichia coli tRNA precursors. RNA 8: 97-109 https://doi.org/10.1017/S1355838202014929
  21. Lin-Chao, S. and S. N. Cohen. 1991. The rate of processing and degradation of antisense RNA I regulates the replication of ColE1-type plasm ids in vivo. Cell 65: 1233-1242 https://doi.org/10.1016/0092-8674(91)90018-T
  22. Lin-Chao, S., C. L. Wei, and Y. T. Lin. 1999. RNase E is required for the maturation of ssrA RNA and normal ssrA RNA peptide-tagging activity. Proc. Natl. Acad. Sci. USA 96: 12406-12411
  23. Lopez, P. J., I. Marchand, S. A. Joyce, and M. Dreyfus. 1999. The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Mol. Microbiol. 33: 188-199 https://doi.org/10.1046/j.1365-2958.1999.01465.x
  24. McDowall, K. J. and S. N. Cohen. 1996. The N-terminal domain of the me gene product has RN ase E activity and is non-overlapping with arginine-rich RNA-binding site. J. Mol. Biol. 255: 349-355 https://doi.org/10.1006/jmbi.1996.0027
  25. Miczak, A., V. R. Kaberdin, C. L. Wei, and S. Lin-Chao. 1996. Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc. Natl. Acad. Sci. USA 93: 3865-3869
  26. Ow, M. C., Q. Liu, and S. R. Kushner. 2000. Analysis of mRNA decay and rRNA processing in Escherichia coli in the absence of RNase E-based degradosome assembly. Mol. Microbiol. 38: 854-866 https://doi.org/10.1046/j.1365-2958.2000.02186.x
  27. Ow, M. C. and S. R. Kushner. 2002. Initiation of tRNA maturation by RNase E is essential for cell viability in E. coli. Genes Develop. 16: 1102-1115 https://doi.org/10.1101/gad.983502
  28. Py, B., H. Causton, E. A. Mudd, and C. F. Higgins. 1994. A protein complex mediating mRNA degradation in Escherichia coli. Mol. Microbiol. 14: 717-729 https://doi.org/10.1111/j.1365-2958.1994.tb01309.x
  29. Py, B., C. F. Higgins, H. M. Krisch, and A. J. Carpousis. 1996. A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381: 169-172 https://doi.org/10.1038/381169a0
  30. Raynal, L. C. and A. J. Carpousis. 1999. Poly(A) polymerase I of Escherichia coli: Characterization ofthe catalytic domain, an RNA binding site and regions for the interaction with proteins involved in mRNA degradation. Mol. Microbiol. 32: 765-775 https://doi.org/10.1046/j.1365-2958.1999.01394.x
  31. Rhee, K. H. 2003. Purification and identification of an antifungal agent from Streptomyces sp. KH-614 antagonistic to rice blast fungus, Pyricularia oryzae. J. Microbiol. Biotechnol. 13: 984-988
  32. Ryu, Y. G, W. Jin, J. Y. Kim, J. Y. Kim, S. H. Lee, and K. J. Lee. 2004. Stringent factor regulates antibiotics production and morphological differentiation of Streptomyces clavuligerus. J. Microbiol. Biotechnol. 14: 1170-1175
  33. Steege, D. A. 2000. Emerging features of mRNA decay in bacteria. RNA 6: 1079-1090 https://doi.org/10.1017/S1355838200001023
  34. Vanzo, N. F., Y. S. Li, B. Py, E. Blum, C. F. Higgins, L. C. Raynal, et al. 1998. Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Develop. 12: 2770-2781 https://doi.org/10.1101/gad.12.17.2770
  35. Wachi, M., G. Umitsuki, M. Shimizu, A. Takada, and K. Nagai. 1999. Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5' end of 16S rRNA. Biochem. Biophy. Res. Commun. 259: 483-488 https://doi.org/10.1006/bbrc.1999.0806
  36. Yi, Y. S., S. H. Kim, M. W. Kim, G. J. Choi, K. Y. Cho, J. K. Song, and Y. H. Lim. 2004. Antifungal activity of Streptomyces sp. against Puccinia recondite causing wheat leaf rust. J. Microbiol. Biotechnol. 14: 422-425