Characterization of the Gene for the Light-Harvesting Peridinin-Chlorophyll-Protein of Alexandrium tamarense

  • LEE SOON-YOUL (Department of Genomic Engineering, Institute of Genetic Engineering, Hankyong National University) ;
  • KANG SUNG-HO (Polar Environmental Research Division, Korea Ocean Polar Research institute (KOPRI)) ;
  • JIN EONSEON (Department of Life Science, Hanyang University)
  • Published : 2005.10.01

Abstract

Photosynthetic dinoflagellates contain a water-soluble, light-harvesting antenna called the peridinin-chlorophyll-protein (PCP) complex, which has an apoprotein with no sequence similarity to other known proteins. There are two forms of PCP apoproteins; the 15-kDa short form and the 32- to 35­kDa long form. The present study describes the PCP protein and its cDNA from Alexandrium tamarense. A cDNA library was constructed from mRNA isolated from A. tamarense. The complete PCP cDNA was generated by reverse-transcription coupled to polymerase chain reaction (RT-PCR), together with rapid-amplification of cDNA ends (RACE). The A. tamarense PCP cDNA encoded a 55-amino acid signal peptide and a 313-amino acid mature protein with a calculated mass of 32 kDa, which corresponded to that of the long form of PCP. Phylogenetic analysis indicated that the sequence of A. tamarense PCP did not cluster with the short-form PCPs, to which it was only about $55\%$ identical, but which were $79-83\%$ identical to other long-form PCPs. The deduced amino acid sequence of A. tamarense PCP contains an internal duplication, which suggests the possibility that long-form PCPs arose by gene duplication or by the fusion of genes encoding the short form. The abundance of PCP mRNA changed substantially in response to different light conditions, indicating the possible existence of a photo-acclimation response in A. tamarense.

Keywords

References

  1. Baek, S.-H., X.-X. Sun, Y.-J. Lee, S.-Y. Wang, K.-N. Han, J.-K. Choi, J.-H. Noh, and E.-K. Kim. 2003. Mitigation of harmful algal blooms by sophorolipid. J. Microbiol. Biotechnol. 13: 651-659
  2. Barros, M. P., E. Pinto, P. Colepicolo, and M. Pedersen. 2001. Astaxanthin and peridinin inhibit oxidative damage in $Fe^{2+}$-Ioaded liposomes: Scavenging oxyradicals or changing membrane penneability? Biochem. Biophys. Res. Commun 288: 225-232 https://doi.org/10.1006/bbrc.2001.5765
  3. Bautista, J. A., R. E. Connors, B. B. Raju, R. G. Hiller, F. P. Sharples, D. Gosztola, M. R. Wasielewski, and H. A. Frank. 1999. Excited state properties of peri din in: Observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids. J. Phys. Chem. Biol. 103: 8751-8758 https://doi.org/10.1021/jp9916135
  4. Brown, K. 1997. Pfiesteria: On the molecular biology of a sea monster. J. NIH Res. 9: 26-27
  5. Escoubas, J., M. Lomas, J. LaRoche, and P. G. Falkowski. 1995. Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc. Natl. Acad. Sci. USA 92: 10237-10241
  6. Frank, H. A. 2001. Spectroscopic studies of the low-lying singlet excited electronic states and photochemical properties of carotenoids. Arch. Biochem. Biophys. 385: 53-60 https://doi.org/10.1006/abbi.2000.2091
  7. Govind, N. S., S. J. Roman, R. Iglesias-Prieto, R. K. Trench, E. L. Triplett, and B. B. Prezelin. 1990. An analysis of the light-harvesting peridinin-chlorophyll a-proteins from dinoflagellates by immunoblotting techniques. Proc. R. Soc. Lond. 240: 187-195
  8. Heddad, M. and I. Adamska. 2000. Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll alb-binding gene family. Proc. Natl. Acad. Sci. USA 97: 3741-3746
  9. Heijne, G. V., J. Steppuhn, and R. Herrmann. 1989. Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180: 535-545 https://doi.org/10.1111/j.1432-1033.1989.tb14679.x
  10. Hiller, R. G., P. M. Wrench, A. P. Gooley, G. Shoebridge, and J. Breton. 1993. The major intrinsic light-harvesting protein of Amphidinium, characterization and relation to other light-harvesting proteins. Photochem. Photobiol. 57: 125-131 https://doi.org/10.1111/j.1751-1097.1993.tb02267.x
  11. Hofmann, E., P. M. Wrench, F. P. Sharples, R. G. Hiller, W. Welte, and K. Diederichs. 1996. Structural basis of light harvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788-1791 https://doi.org/10.1126/science.272.5269.1788
  12. Jin, E. S., J. E. W. Polle, H. K. Lee, S. M. Hyun, and M. Chang. 2003. Xanthophylls in microalgae: From biosynthesis to biotechnological mass production and application. J. Microbiol. Biotechnol. 13: 165-175
  13. Jin, E. S., J. W. E. Polle, and A. Melis. 2001. Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem-II from photoinhibition in the green alga Dunaliella salina. Biochim. Biophys. Acta 1506: 244-259 https://doi.org/10.1016/S0005-2728(01)00223-7
  14. Kim, N.-J., J.-K. Lee, and C.-G. Lee. 2004. Pigment reduction to improve photosynthetic productivity of rhodobacter sphaeroides. J. Microbiol. Biotechnol. 14: 442-450
  15. Kim, S. H., K. Y. Kim, C. H. Kim, W. S. Lee, M. Chang, and J. H. Lee. 2004. Phylogenetic analysis of harmful algal bloom (HAB)-causing Dinoflagellates along the Korean coasts, based on SSU rRNA gene. J. Microbiol. Biotechnol. 14: 959-967
  16. Le Tutour, B., F. Benslimane, M. P. Gouleau, J. P. Gouygou, B. Saadan, and F. Quemeneur. 1998. Antioxidant and prooxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus, and Ascophyllum nodosum. J. Appl. Phycol. 10: 121-129 https://doi.org/10.1023/A:1008007313731
  17. Le, Q. H., P. Markovic, J. W. Hastings, R. V. M. Jovine, and D. Morse. 1997. Structure and organization of the peridinin-chlorophyll a-binding protein gene in Gonyaulax polyedra. Mol. Gen. Genet. 255: 595-604 https://doi.org/10.1007/s004380050533
  18. Lohuis, M. R. and D. J. Miller. 1998. Light-regulated transcription of genes encoding peridinin chlorophyll a proteins and the major intrinsic light-harvesting complex proteins in the dinoflagellate Amphidinium carterae Hulburt (Dinophycae)-changes in cytosine methylation accompany photoadaptation. Plant Physiol. 117: 189-196 https://doi.org/10.1104/pp.117.1.189
  19. Masuda, T., J. E. Polle, and A. Melis. 2002. Biosynthesis and distribution of chlorophyll among the photosystems during recovery of the green alga Dunaliella salina from irradiance stress. Plant Physiol. 128: 603-614 https://doi.org/10.1104/pp.010595
  20. Nielsen, H., J. Engelbrecht, S. Brunak, and G. V. Heijne. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Proto Eng. 10: 1-6 https://doi.org/10.1093/protein/10.1.1
  21. Norris, B. J. and D. J. Miller. 1994. Nucleotide sequence of a cDNA clone encoding the precursor of the peridinin-chlorophyll a-binding protein from the dinoflagellate Symbiodinium sp. Plant Mol. Biol. 24: 673-677 https://doi.org/10.1007/BF00023563
  22. Osuka, A., T. Kume, G. W. Haggquist, T. Javorfi, J. C. Lima, E. Melo, and K. R. Naqvi. 1999. Photophysical characteristics of two model antenna systems: A fucoxanthin-pyropheoporbide dyad and its peridinin analogue. Chem. Phys. Lett. 313: 499-504 https://doi.org/10.1016/S0009-2614(99)01098-2
  23. Pinto, E., L. H. Catalani, N. P. Lopes, P. DiMascio, and P. Colepicolo. 2000. Peridinin as the major biological carotenoid quencher of singlet oxygen in marine algae Gonyaulax polyedra. Biochem. Biophys. Res. Commun. 268: 496-500 https://doi.org/10.1006/bbrc.2000.2142
  24. Prezelin, B. B. and F. T. Haxo. 1976. Purification and characterization of peridinin chlorophyll a-proteins from the marine dinoflagellates Glenodinium sp. and Gonyaulax polyedra. Planta 130: 251-256 https://doi.org/10.1007/BF00387829
  25. Prezelin, B. B. 1987. Photosynthetic physiology of dinoflagellates, pp. 174-223 In F. J. R. Taylor (ed.). The Biology of Dinoflagellates. Blackwell Scientific, Oxford, England
  26. Roman, J. S., N. S. Govind, E. L. Triplett, and B. B. Prezelin. 1988. Light regulation of peridinin-chlorophyll a-protein (PCP) complexes in the dinoflagellate, Glenodinium sp. Plant Physiol. 88: 594-599 https://doi.org/10.1104/pp.88.3.594
  27. Sharples, F. P., P. M. Wrench, K. au, and R. G. Hiller. 1996. Two distinct forms of the peridinin-chlorophyll a-protein from Amphidinium carterae. Biochim. Biophys. Acta 1276: 117-123 https://doi.org/10.1016/0005-2728(96)00066-7
  28. Stochaj, W. R. and A. R. Grossman. 1997. Differences in the protein profiles of cultured and endosymbiotic Symbiodinium sp. (Pyrrophyta) from the anemone Aiptasia pallida (Anthozoa). J. Phycol. 33: 44-53 https://doi.org/10.1111/j.0022-3646.1997.00044.x
  29. Tracewell, C. A., J. S. Vrettos, J. A. Bautista, H. A. Frank, and G. W. Brudvig. 2001. Carotenoid photooxidation in photosystem-II. Arch. Biochem. Biophys. 385: 61-69 https://doi.org/10.1006/abbi.2000.2150
  30. Triplett, E. L., R. V. M. Jovine, N. S. Govind, S. J. Roman, S. S. Chang, and B. R. Prezelin.1993. Characterization of two full-length cDNA sequences encoding for apoprotein of peridinin-chlorophyll a-protein (PCP) complexes. Mol. Mar. Biol. Biotech. 2: 246-254
  31. Weis, V. M., E. A. Verde, and W. S. Reynolds. 2002. Characterization of a short form peridinin-chlorophyll-protein (PCP) cDNA and protein from the symbiotic dinoflagellate Symbidonium muscatinei (Dianophyceae) from the sea anemone Anthopleura elegantissima (Cnidria). J. Phycol. 38: 157-163 https://doi.org/10.1046/j.1529-8817.2002.01132.x