Physiological Properties of Lactobacillus acidophilus 30SC Exposed to Heat Shock Stress

Heat Shock Stress에 의한 Lactobacillus acidophilus 30SC의 생리적 특성

  • Moon, Yong-Il (Division of Pet & Herb Science, Woosuk University) ;
  • Han, Soo-Min (Department of Animal Science and Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Park, Dong-Jun (Korea Food Research Institute) ;
  • Chi, Youn-Tae (Department of Animal Science and School of Biological Science & Biotechnology, Chonnam National University) ;
  • Kim, Kwang-Hyun (Department of Animal Science and Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Oh, Sejong (Department of Animal Science and Institute of Agricultural Science & Technology, Chonnam National University)
  • 문용일 (우석대학교 애완동물 허브자원학부) ;
  • 한수민 (전남대학교 동물자원학부 농업과학기술연구소) ;
  • 박동준 (한국식품연구원) ;
  • 지연태 (전남대학교 생명과학기술학부) ;
  • 김광현 (전남대학교 동물자원학부 농업과학기술연구소) ;
  • 오세종 (전남대학교 동물자원학부 농업과학기술연구소)
  • Published : 2005.09.01

Abstract

We examined the enhancement of thermotolerance for storage conferred on Lactobacillus acidophilus 30SC by adaptation to different stresses. The viable cells of Lactobacillus acidophilus 30SC were compared with their viability prior to heating at $45,\;55^{\circ}C\;and\;60^{\circ}C$. Heat-adapted ($45^{\circ}C$ for 15 min) L. acidophilus 30SC in MRS broth exhibited higher survivability at lethal temperature of $55^{\circ}C$ than control. Cellular protein profiles of L. acidophilus 30SC during heat adaptation were examined with SDS-PAGE, and scanning electron microscopy. When L. acidophilus 30SC was heat-adapted at $55^{\circ}C$ for 15min, 5 new protein spots of ca $8\~45\;kDa$ size were observed on 2D SDS-PAGE. It was presumed that new proteins of L. acidophilus 30SC were produced to adapt to the environment of higher growth temperature.

Probiotics로서의 활성이 높은 Lactobacillus acidophilus 30SC의 생존성을 증진시키기 위한 기초 자료를 얻고자, heat shock stress를 가한 후 생균수를 측정하고, 생존율의 변화를 통해 고온 처리에 의한 고온 및 냉동 내성의 증진 효과를 평가하였다. 또한 열처리 동안 새로이 발현되는 단백질을 1차원 및 2차원 전기영동을 이용하여 확인하였으며, 주사전자현미경을 사용하여 세포 모양을 관찰하였다. L. acidophilus 30SC는 $55^{\circ}C$의 heat shock stress를 받았을 때 생존 균수가 감소하는 것으로 나타났다. 나머지 처리구는 $37^{\circ}C$에서 계속 배양한 것과 별다른 차이를 나타내지 않았다. 특히 $45^{\circ}C$로 heat shock stress를 준 경우 $37^{\circ}C$에서 배양한 것과 거의 동일하였다. L. acidophilus 30SC에 $45^{\circ}C$로 heat shock stress를 가한 뒤 추가로 55 및 $60^{\circ}C$에 노출시켰을 때 가장 높은 생존율을 나타냈고, 치사 수준인 $55^{\circ}C$의 heat shock stress를 받은 후 $55^{\circ}C$$60^{\circ}C$에 노출되었을 때 생존율이 급격히 감소하는 경향을 보였다. L. acidophilus 30SC에 $55^{\circ}C$로 15분 Heat shock stress를 준 경우 약 22와 25 kDa의 단백질들이 새로이 발현된 것으로 나타났으나, 24와 27 kDa로 추정되는 단백질의 발현 정도는 낮았음을 확인하였다. 2차원 전기영동을 실시한 결과, $37^{\circ}C$에서 배양한 대조구와 비교할 때 $55^{\circ}C$로 heat shock stress를 준 경우 새로이 5개의 protein spot을 발견할 수 있었다. 주사전자현미경으로 세포의 형태를 관찰한 결과 heat shock stress를 준 경우에는 세포의 길이가 신장되는 경향을 나타내었다.

Keywords

References

  1. Boutibonnes, P., Bisson, V., Thammavongs, B., Hartke, A., Panoff, J. M., Benachour, A., and Auffray, Y. (1995) Induction of thermotolerance by chemical agents in Lactococcuslactis subsp. lactis IL1403. Int. J. Food Microbiol. 25, 83-94 https://doi.org/10.1016/0168-1605(94)00149-Z
  2. Csonka, L. N. and Hanson, A. D. (1991) Prokaryotic osmoregulation: genetics and physiology. Ann. Rev. Microbiol. 45, 569-606 https://doi.org/10.1146/annurev.mi.45.100191.003033
  3. Demple, B. (1991) Regulation of bacterial oxidative stress genes. Ann. Rev. Gen. 25, 315-337 https://doi.org/10.1146/annurev.ge.25.120191.001531
  4. Diez-Gonzalez, F. and Russel, J. B. (1999) Factors affecting the extreme acid resistance of Escherichia coli O157:H7. F. Microbiol. 16, 367-374 https://doi.org/10.1006/fmic.1998.0249
  5. Fernandez Murga, M. L., Cabrera, G. M., de Valdez, G. F., Disalvo, A., and Seldes, A. M. (2000) Influence of growth temperature on cyrotolerance and lipid composition of Lactobacillus acidophilus. J. Appl. Micorobiol. 88, 342-348 https://doi.org/10.1046/j.1365-2672.2000.00967.x
  6. Foster, J. W. and Hall, H. K. (1991) Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J. Bacteriol. 173, 5129-5135 https://doi.org/10.1128/jb.173.16.5129-5135.1991
  7. Fuller, R. (1989) Probiotics in man and animals. J. Appl. Bacteriol. 66, 365-378 https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  8. Gahan, C. G. M. and Hill, C. (1999) The relationship between acid and virulence in Salmonella typhimurium and Listeria monocytogenes. Int. J. Food Microbiol. 50, 93-100 https://doi.org/10.1016/S0168-1605(99)00079-3
  9. Giard, J. C., Laplace, J. M., Rince, A., Pichereau, V., Benachour, A., Leboeuf, C., Flahaut, S., Auffray, Y., and Hartke, A. (2001) The stress proteome of Enterococcus faecalis. Electrophoresis 22, 2947-2954 https://doi.org/10.1002/1522-2683(200108)22:14<2947::AID-ELPS2947>3.0.CO;2-K
  10. Gomes, A. M. P. and Malcata, F. X. (1999) Bifidobacterium spp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol. 10, 139-157 https://doi.org/10.1016/S0924-2244(99)00033-3
  11. Hill, C., O'Driscoll, B., and Booth, I. (1995) Acid adptation and food poisoning microorganisms. Int. J. Food Microbiol. 28, 245-254 https://doi.org/10.1016/0168-1605(95)00060-7
  12. Kim, J. H., Lee, S. Y., Chang, C. E., Kim, S. C., Yun, H. S., and So, J. S. (2001a) Effect of cold adaptation on the improved viability of Lactobacillus crispatus KLB46. Kor. J. Biotechnol. Bioeng. 16, 626-631
  13. Kim, J. H., Park, M. Y., Kim, S. C., Yun, H. S., and So, J. S. (2003) Improved viability and proteome analysis of Lactobacillus fermentum KLB12 upon heat stress. Kor. J. Biotechnol. Bioeng. 18, 294-300
  14. Kim, W. S., Perl, L., Park, J. H., Tandianus, J. E., and Dunn, N. W. (2001b) Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr. Microbiol. 43, 346-350 https://doi.org/10.1007/s002840010314
  15. Konkel, M. E., Kim, B. J., Klena, J. D., Young, C. R., and Ziprin, R. (1998) Characterization of thermal stress response of Campylobacter jejuni. Infect. Immun. 66, 3666-3672
  16. Movahedi, S. and Waites, W. (2000) A two-dimensional protein gel electrophoresis study of the heat stress response of Bacillus subtilis cells during sporulation. J. Bacteriol. 182, 4758-4763 https://doi.org/10.1128/JB.182.17.4758-4763.2000
  17. O'Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007-4021
  18. Oh, S., Kim, S. H., and Worobo, R. W. (2000) Characterization and purification of a bacteriocin produced by a potential probiotic culture, Lactobacillus acidophilus 30SC. J. Dairy Sci. 83, 2747-2752 https://doi.org/10.3168/jds.S0022-0302(00)75169-1
  19. Otani, M., Tabata, J., Ueki, T., Sano, K., and Inouye, S. (2001) Heat-shock-induced proteins from Myxococcus xanthus. J. Bacteriol. 183, 6282-6287 https://doi.org/10.1128/JB.183.21.6282-6287.2001
  20. Pagan, R., Condon, S., and Sala, F. J. (1997) Effects of several factors on the heat-shock-induced thermotolerance of Listeria Monocytogenes. Appl. Environ. Microbiol. 63, 3225-3232
  21. Pot, B., Ludwig, W., Kersters, K., and Schleifer, K. H. (1994) Taxonomy of lactic acid bacteria. In: Bacteriocins of lactic acid bacteria. De Vuyst, L., and Vandamme, E. J. (eds.), Chapman and Hall, London. pp.13-90
  22. Shin, J. G. (2003) Physiological properties of lactic acid bacteria exposed to lower-growth temperature. Ph. D. thesis, Seoul National Univ., Seoul, Korea