Probiotic Characteristics of Lactobacillus rhamnosus Isolated from Kefir

Kefir로부터 분리한 Lactobacillus rhamnosus의 Probiotic 특성

  • 유숙진 (국립한경대학교 낙농과학과) ;
  • 조진국 (고품질친환경농축산물 생산기술연구센터) ;
  • 황성구 (국립한경대학교 낙농과학과) ;
  • 허강칠 (국립한경대학교 낙농과학과)
  • Published : 2005.09.01

Abstract

To search probiotic microorganisms, we isolated Lactobacillus sp. from kefir, The Lactobacillus sp. strain showed $99.5\%$ of identity to species Lactobacillus rhamnosus by API kit. Lactobacillus rhamnosus showed high resistances to acidic environment, which grew well even at pH 2.0 and $1.0\%$ bile salt Enzyme activity of Lactobacillus rhamnosus was higher in amylase ($0.673\;{\mu}mol/min/mg$) than that in xylanase ($0.288\;{\mu}mol/min/mg$), cellulase($0.117\;{\mu}mol/min/mg$) and phytase($0.269\;{\mu}mol/min/mg$). Especially, the Lactobacillus rhamnosus showed high heat stability which remained $1{\times}10^6\;CFU/ml$ at $60^{\circ}C$. The maximum numbers of Lactobacillus rhamnosus on growth owe was reached at 24 h fermentation and pH was decreased to 4.6. The resistances of Lactobacillus rhamnosus to acidic pH and bile salt were better than that of Lactobacillus acidophilus used as control. When Lactobacillus rhamnosus was cultured with E. coli in MRS broth, E. coli was disappeared after 18 h. These result suggest that the isolated Lactobacillus rhamnosus has a useful probiotics properties.

본 연구에서는 Kefir를 $0.02\%\;NaN_3$를 포함하는 MRS agar에 도말하여 1차적으로 Lactobacillus sp.를 선발하였고, 그 중 가장 우수한 균을 최종 분리하였다. 분리된 유산균은 API kit를 이용한 당 발효성 및 생화학적 시험을 토대로 Lactobacillus rhamnosus에 $99.5\%$의 상동성을 가진 유산균종으로 동정되었다. Lactobacillus rhamnosus는 amylase와 xylanase 비활성이 0.673과 $0.288\;{\mu}mole/min/mg$으로 비교적 높은 활성을 보였다. pH 2에서 $65\%$ 이상의 강한 생존률을 나타냈고 $1.0\%$ 담즙산에서도 $72\%$가 생존하는 내성을 나타냈다. $60^{\circ}C$에서도 Lactobacillus rhamnosus는 강한 열 안정성을 나타내 대조구인 Lactobacillus acidophilus보다 100배 이상의 생존률을 보였다. 또한 Lactobacillus rhamnosus는 대장균에 첨가하여 혼합배양시 18시간 이내에 대장균을 $100\%$ 사멸시켜 높은 항균 활성을 나타냈다. Lactobacillus rhamnosus는 100ppm CTC, 50ppm OTC, 150ppm Lincomycin, 200ppm Tylosin에서는 생장이 억제되나 기타의 9가지의 항생제에 대하여는 강한 내성을 갖는 것으로 확인되었다. 이상의 결과로부터 새로 분리한 Lactobacillus rhamnosus는 소화에 관련한 효소 활성이 높고 내산성 및 내담즙산성, 열 안정성이 우수하며 높은 항균 활성을 함유하여 식품용 probiotics로 충분한 활용 가치가 있는 것으로 생각되었다.

Keywords

References

  1. APHA (1985) Standard methods for the examination of dairy products, 15th ed, American Public Health Association, Washington. D. C
  2. Booth, I. R. (1985) Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359-378
  3. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  4. Fuller, R. and Gibson, G. R. (1977) Modification of the intestinal microflora using probiotics and prebiotics. Scand. J. Gastroenterol. 222, 28-31
  5. Gilliand, S. E. and Speck, M. L. (1997) Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Microbiol. 33, 15-18
  6. Gilliland, S. E. (1979) Benifical interrelationships between certain microorganisms and humans: candidate micro-organisms for use as dietary adjuncts. J. Food Prot. 42, 164-167 https://doi.org/10.4315/0362-028X-42.2.164
  7. Haenlein, G. F. W. (1995) Status and prospects of the dairy goat industry in the United States. J. Anim. Sci. 74, 1173-1181
  8. Havenaar, R., Brink, B. T., and Veld, J. H. (1992) Selection of strains for probiotic use. In 'Probiotics' Fuller, R.(ed), Chapman & Hall, New York, pp. 209-224
  9. Hood, S. K. and Zottola, E. A. (1988) Effect of low pH on the ability of Lactobacillus acidophilus to survive and adhere to human intestinal cells. J. Food Sci. 53, 1541-1516
  10. Itoh, K. (1990) Lactic acid bacteria and intestinal micro-flora, The 11th Internation Symposium on Lactic Acid Bacteria and Human Health, Seoul, Korea, pp. 23-25
  11. Khasin, A., Alchanati, I., and Shoham, Y. (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59, 1725-1730
  12. Kimura, K., McCartney, A. L., McConell, M. A., and Tannock, G. W. (1977) Analysis of fecal populations of bifidobacteria and lactobcilli and investigation of the immunological response of their human hosts to the predominant strains. Appl. Environ. Microbiol. 63, 3394-3398
  13. Klaver, F. A. M. and van der Meer, R. (1993). The assumed assimilation of cholesterol by Lactobacillus and Bifidobacterium bifidum is due to their bile salt deconjugation activity. Appl. Environ. Microbial. 59, 1120-1124
  14. Koroleva, N. S. (1988). Technology of kefir and kumys. Internation Dairy Federation Bulletin. 227, 96-99
  15. Kobayashi, Y., Tohyaman, K., and Terashima, T. (1974) Studies on biological characteristics of Lactobacillus. II. Tolererance of the multiple antibiotic resistance-strain, L. casei PSR3002, to artificial digestive fluids. Japan. J. Microbio. 29, 691-697
  16. Kroger, M. and Kurmann, J. A. (1989) Fermented milks - past. present and future. Food Technol. 43, 92-99.
  17. Loffler, F. E., Sun, Q., Li, J., and Tiedje, J. (2000) 16S rRNA gene-base detection of tetrachoroethene-dechlorinating desulfuromonase and dehaloccoides species. Appl. Enviroron. Microbiol. 66, 1369-1374 https://doi.org/10.1128/AEM.66.4.1369-1374.2000
  18. Otle', S. and Cagindi, O. (2003) Kefir; A probiotic dairy-composition, nutritional and therapeutic aspects. Pakistan J. of Nutrition 2(2), 54-59 https://doi.org/10.3923/pjn.2003.54.59
  19. Park, S. Y., Ko, Y. T., Jeong, H. K., Yang, J. O., Chung, H. S., Kim, Y. B., and Ji, G. E. (1996) Effect of various lactic acid bacteria on the serum cholesterol levels in rats and resistance to acid bile and antibiotics. Kor. J. Appl. Microbiol. Biotechnol. 24, 304-310
  20. Shiomi, M. K., Sakai, M., Murofushi, M., and Aibara, K. (1982) Antitumor activity in mice of orally administered polysaccharide from Kefir grain. Jpn. J. Med. Sci. Biol. 35(2), 75-80 https://doi.org/10.7883/yoken1952.35.75
  21. Shimizu, M. (1992) Purification and characterization of phytase from Bacillus subtilis(natto) N-77. Biosci. Biotech. Biochem. 56, 1266 https://doi.org/10.1271/bbb.56.1266
  22. Shiral, K., Revah-Molseev, S., Garcia-Garlbay, M., and Marshall, V. M. (1994) Ability of some strains of lactic acid bacteria bacteria to degrade phytic acid. Lett. Appl. Microbiol. 19, 366-369 https://doi.org/10.1111/j.1472-765X.1994.tb00477.x
  23. Smith, H. W. (1975) Persistence of tetracycline resistance in pig. Nature 258, 628-629 https://doi.org/10.1038/258628a0
  24. Tannock, G. W., Crichton, C., Welling, G. W., Koopman, J. P., and Midtvedt, T. (1988) Reconstitution of the gastrointestinal microflora of lactobacillus-free mice. Appl. Environ. Microbial. 54, 2971-2975
  25. Tannock, G. W. (1997) Probiotic properties of lactic acid bacteri: plenty of scope for fundamental R & D. Trends in Biotechnology. 15, 270-274 https://doi.org/10.1016/S0167-7799(97)01056-1
  26. Toba, T. (1987) Symposium Reports on Advance of Dairy Science and Technology in Japan. Japanese Journal of Dairy and Food Science 36(6), A235-A243
  27. Van Houweling, C. D. (1971) FDA's views regarding antibiotics used in feed. In: Proceedings of the university of Maryland nutrition conference, Washington, DC, MD, USA
  28. Walsh, G. A., Power, R. F., and Headon, D. R. (1993) Enzymes in the animal-feed industry. Tibtech. 11, 424-429 https://doi.org/10.1016/0167-7799(93)90006-U