Extraction of Short Peptide Using Supported Liquid Membranes

Supported Liquid Membrane을 이용한 Short Peptide의 추출

  • Lee, Jae-Heung (Department of Food Science and Biotechnology, Sungkyunkwan University) ;
  • Park, Ki-Moon (Department of Food Science and Biotechnology, Sungkyunkwan University)
  • 이재흥 (성균관대학교 식품생명공학과) ;
  • 박기문 (성균관대학교 식품생명공학과)
  • Published : 2005.09.01

Abstract

The objective of this work was to study separation of short peptide (glycine-tyrosine) by using supported liquid membranes (SLMs) containing Aliquat as a cationic carrier, In the present investigation, the influence of pH of donor phase, concentrations of carrier and salt concentrations of acceptor phase on separation flux rate were investigated. Below pH 7.0 the flux rate was not affected by NaCl concentration or carrier concentration. However, the rate was increased significantly above pH 7.0. The rate with Hossain's SLM(H-SLM) containing $20\%$ Aliquat was about 3-fold higher with pH 9.0 at 0.25 M NaCl and 10-fold higher with pH 8.0 at 1.0 M NaCl than that with Duggan's SLM(D-SLM) containing $8\%$ Aliquat respectively. Furthermore, the rate with H-SLM was 10-fold higher at 1.0 M NaCl than the rate with 0.25 M NaCl, In conclusion, it would appear that the rate of separation was facilitated by using high salt concentrations together with high carrier concentrations above pH 7.0.

SLM을 이용한 short peptide의 분리를 목적으로 donor phase의 pH 및 acceptor phase의 염농도, membrane의 carrier 농도 차에 따른 peptide의 이동속도를 확인한 결과는 다음과 같다. 즉, pH 7.0 이하에서는 acceptor phase의 NaCl 농도나 carrier 농도에 상관없이 Gly-Tyr의 이동속도는 거의 영향을 끼치지 않았고, pH 7.0 이상에서는 이동속도가 급격히 증가함을 알 수 있었다. 그리고 Aliquat가 $8\%$ 함유된 D-SLM과 $20\%$ 함유된 H-SLM의 경우 Gly-Tyr의 이동속도는 H-SLM이 D-SLM보다 pH 9.0, 0.25 M NaCl 용액에서는 약 3배, pH 8.0, 1.0 M NaCl용액에서는 10배 정도 빠르게 이동하였다. 또한 H-SLM에서 acceptor phase의 NaCl 농도가 1.0 M 인 경우 0.25 M에 비해 10배 정도 이동속도가 빠른 것으로 나타났다. 따라서, short peptide인 Gly-Tyr의 SLM을 이용한 추출에서 donor phase의 pH 7.0 이상, carrier 농도가 높은 H-SLM 사용, acceptor phase의 염 농도가 높을수록 이동속도가 빠른 것으로 나타났다.

Keywords

References

  1. Drapala, A. and Wieczorek, P. (2002) Extraction of short peptides using supported liquid membranes. Desalination. 148, 235-239 https://doi.org/10.1016/S0011-9164(02)00703-8
  2. Dzygiel, P. and Wieczorek, P. (2001) Supported liquid membrane extraction of glyphosate metabolites. J. Sep. Sci. 24, 561-566 https://doi.org/10.1002/1615-9314(20010801)24:7<561::AID-JSSC561>3.0.CO;2-Z
  3. Dzygiel, P., Wieczorek, P., Jonsson, J. A., and Mathiasson, L. (1998) Enrichment of amino acids by supported liquid membrane extraction using Aliquat 336 as a carrier. Anal. Lett. 31, 1261-1274 https://doi.org/10.1080/00032719808002861
  4. Gardiner, S. J., Smith, B. D., Duggan, P. J., Karpa, M. J., and Griffin, G. J. (1999) Selective fructose transport through supported liquid membranes containing diboronic acids or conjugated monoboronic acid-quaternary ammonium carriers. Tetrahedron. 55, 2857-2864 https://doi.org/10.1016/S0040-4020(99)00075-7
  5. Lindegard, B., Jonsson, J. A., and Mathiasson, L. (1992) Liquid membrane work-up of blood plasma samples applied to gas chromatographic determination of aliphatic amines. J. Chromatogr. 573, 191-200 https://doi.org/10.1016/0378-4347(92)80119-B
  6. MA, P., Chen, X. D., and Hossain, M. (2000) Lithium extraction from a multicomponent mixture using supported liquid membranes. Separ. Sci. Technol. 35, 2513-2533 https://doi.org/10.1081/SS-100102353
  7. Nielsen, P. M., Petersen, D., and Dambmann, C. (2001) Improved method for determining food protein degree of hydrolysis. J. Food Sci. 66, 642-646 https://doi.org/10.1111/j.1365-2621.2001.tb04614.x
  8. Rak, M., Dzygiel, P., and Wieczorek, P. (2001) Supported liquid membrane extraction of aromatic aminophosphonates. Anal. Chim. Acta. 433, 227-236 https://doi.org/10.1016/S0003-2670(01)00785-1
  9. Shen, Y., Gronberg, L., and Jonsson, J. A. (1994) Experimental studies on the enrichment of carboxylic acids with tri-n-octylphosphine oxide as extractant on a supported liquid membrane. Anal. Chim. Acta. 292, 31-39 https://doi.org/10.1016/0003-2670(94)00041-7
  10. Stolwijk, T. B., Sudholter, E. J. R., and Reinhoult, D. N. (1987) Crown ether mediated transport: A kinetic study of potassium perchlorate transport through a supported liquid membrane containing dibenzo 18 crown 6. J. Am. Chem. Soc. 109, 7042-7047 https://doi.org/10.1021/ja00257a023
  11. Wieczorek, P., Jonsson, J. A, and Mathiasson, L. (1997) Concentration of amino acids using supported liquid membrane with di-2-ethylhexylphosphoric acid as a carrier. Anal. Chim. Acta. 346, 191-197 https://doi.org/10.1016/S0003-2670(97)00123-2