DOI QR코드

DOI QR Code

Bioconversion of Straw Into Improved Fodder: Mycoprotein Production and Cellulolytic Acivity of Rice Straw Decomposing Fungi

  • Helal, G.A. (Botany Department, Faculty of Science, Zagazig University)
  • 발행 : 2005.06.30

초록

Sixty two out of the sixty four species of fungal isolates tested could produce both $exo-{\beta}1,4-gluconase\;(C_1)$ and $endo-{\beta}1,4-gluconase\;(C_x)$ on pure cellulose and rice straw as carbon source in Czapek's medium. Fifty-eight and fifteen species were able to grow at $25^{\circ}C$ and at $45^{\circ}C$, respectively. Eleven species could grow at both $25^{\circ}C$ and $45^{\circ}C$ while, four species appeared only at $45^{\circ}C$. The most cellulolytic species at $25^{\circ}C$ was Trichoderma koningii producing 1.164 $C_1$ (mg glucose/1 ml culture filtrate/1 hr) and 2.690 $C_x$ on pure cellulose, and 0.889 $C_1$, and 1.810 $C_x$ on rice straw, respectively. At $45^{\circ}C$, the most active thermotolerant species were Aspergillus terreus, followed by A. fumigatus. Talaromyces thermophilus was the highest active thermophilic species followed by Malbranchea sulfurea. Most of these species were also active in fermentation of rice straw at 25 and $45^{\circ}C$ (P<0.05). The most active ones were T. koningii, A. ochraceus and A. terreus, which produced 201.5, 193.1 and 188.1 mg crude protein/g dry straw, respectively.

키워드

참고문헌

  1. Abdel-Sater, M. A. and EI-Said, A H. M. 2001. Xylan-decomposing fungi and xylanolytic activity. Int. Biodeterior. and Biodegrad 47: 15-21 https://doi.org/10.1016/S0964-8305(00)00113-X
  2. Afzal, N., Firdous, T. and Shah, F. H. 1983. Screening of isolated microbes for cellulase production. Pakistan J. Sci. Ind. Res. 26: 379-380
  3. Allen, M. B. 1953. Exp. In soil bacteriology. 1st Ed. Burgess Puble Co
  4. Amanat, A, Azim, A., Mir, F. A., Bhatti, M. A. and Ali, A. 1987. Treatment of cereal straw with white rot fungi. Pakistan J. Agric. Res. 8: 428-432
  5. Araujo, A. and D'Souza, J. 1986. Enzymatic saccharification of pretreated rice straw and biomass production. Biotechnol. Bioeng.28: 1503-1509 https://doi.org/10.1002/bit.260281008
  6. Bastawde, K. B. 1992. Cellulolytic enzymes of thermotolerant Aspergillus terreus strain and their action on cellulosic substrates. World J. Microbiol. Biotechnol. 8: 45-49 https://doi.org/10.1007/BF01200683
  7. Chahal, D. S. 1982. Bioconversion of lignocelluloses into food and feed rich in protein. Pp 551-584. In: Subba RAO, N. S. Ed. Advances in agricultural microbiology. Oxford and IBH Pub. Co. New Delhi
  8. Chahal, D. S.. 1985. Solid state fermentation with T. reesei for cellulase production. Appl. Environ. Microbiol. 49: 205-210
  9. Chaplin, M. F. and Kennedy, J. F. 1987. Carbohydrate analysis IRL. Press, Oxford and Washington
  10. Coronel, L. M., Joson, L. M. and Mesina, O. G 1991. Isolation and screening of thermophilic fungi for cellulase production. Philippine J Sci. 120: 379-389
  11. Cruz, W. T. and Halos, S. C. 1988. Screening and comparative production of cellulases by local Penicillium isolates and Trichoderma reesei. Philippine J Sci. 117: 103-108
  12. Darmwal, N. S. and Gaur, A. C. 1991. Isolation of cellulolytic fungi, for cellulase and protein production from rice straw. Zentralblatt fur Microbiologie 146: 467-470
  13. Deacon, J. W. 1985. Decomposition of filter paper cellulose by thermophilic fungi acting singly, in combination, and in sequence. Tran. Br. Mycol. Soc. 85: 663-669 https://doi.org/10.1016/S0007-1536(85)80261-8
  14. Duncan, D. B. 1955. Multiply range and multiple (F) test. Biometrics, 11: 1-42 https://doi.org/10.2307/3001478
  15. Dytham, C. 1999. Choosing and using statistics : A biologist's guide. Blackwell Science Ltd., London, UK. p 147
  16. Falih, M. A. 1998. Impact of heavy metals on cellulolytic activity of some soil fungi. Kuwait J Sci. Eng. 25: 397-407
  17. Ganev, G, Kojucharova, N. and Surdjiiska, S. 1998. Biological and nutritive value of fungal protein obtained by bioconversion of wheat straw. Bulgarian J Agri. Sci. 4: 223-230
  18. Garrett, S. D. 1981. Soil fungi and soil fertility. 2nd ed. Oxford, Pergamon Press
  19. Grajek, W. 1988. Production of protein by thermophilic fungi from sugar-beet pulp in solid-state fermentation. Biotechnol. Bioeng. 32: 255-260 https://doi.org/10.1002/bit.260320218
  20. Harper, S. H. T. and Lynch, J. M. 1982a. The kinetics of straw decomposition in relation to its potential to produce the phytotoxin acetic acid. J Soil Sci. 32: 627-637 https://doi.org/10.1111/j.1365-2389.1981.tb01735.x
  21. Harper, S. H. T. and Lynch, J. M. 1982b. The role of water-soluble components in phtotoxicity from decomposing straw. Plant Soil 65: 11-17 https://doi.org/10.1007/BF02376798
  22. Harper, S. H. T. and Lynch, J. M. 1985. Colonization and decomposition of straw by fungi. Trans. Br. Mycol. Soc. 85: 655-661 https://doi.org/10.1016/S0007-1536(85)80260-6
  23. House, G T. and Stinner, R. F. 1987. Decomposition of plant residues into tillage agroecosystem. Influence of litter on mesh size and soil arthropods. Pedobiologia 30: 351-360
  24. Jackson, M. G 1977. The alkali treatment of straws 'review article', Anim. Feed Sci. Technol. 2: 105-130 https://doi.org/10.1016/0377-8401(77)90013-X
  25. Kang, S. W., Park, Y. S., Lee, J. S., Hong, S. I., Kim, S. W. 2004. Production of cellulases and hemicellulases by Aspergillus niger KK2 from legocellulosic biomass. Bioreso. Technol. 91: 153-156 https://doi.org/10.1016/S0960-8524(03)00172-X
  26. Lowery, O. H., Resebrough, N. J., FaIT, A. L. and Randall, R. J. 1951. Protein measurement with the Folin-phenol reagent. J Biol. Chem. 193: 265-275
  27. Maheshwari, R., Bharadwaj, G and Bhat, M. K. 2000. Thermophilic fungi : Their physiology and enzymes. Microbiol. Mol. Biol. Rev. 64: 461-488 https://doi.org/10.1128/MMBR.64.3.461-488.2000
  28. Majumdar, P., Chanda, S., Majumdar, P. and Chanda, S. 2001. Chemical profile of some lignocellulosic crop residues. Indian J. Agr. Bioch. 14: 29-33
  29. Mandels, M. 1981. Cellulases. Annual Reports on Fermentation Process 5: 35-78
  30. Mandels, M and Weber, J. 1969. The production of cellulase. Adv. Chem. Ser. 95: 391-414 https://doi.org/10.1021/ba-1969-0095.ch023
  31. Morais, M. H., Ramos, A. C. and Oliveira, J. S. 1999. Culture of Lentinus edodes 'Shiitake'. Silva Lusitana 7: 153-171
  32. Moubasher, A. H. 1993. Soil fungi in Qatar and other Arab Countries. The Centre of Scientific and Applied Research, Doha, Qatar
  33. Moubasher, A. H. , Abdel-Hafez, S. I. I., Abdel-Fattah, H. M. and Moharram, A. M. 1984. Fungi of wheat and broad-bean straw compost;;. II. Thermophilic fungi. Mycopathologia 84: 65-71 https://doi.org/10.1007/BF00436514
  34. Paech, K. and Tracey, M. V. I955. Modem methods of plant analysis. Berlin. Gottingen. Heidelberg
  35. Rai, S. N., Walli, T. K. and Gupta, B. N. 1989. The chemical composition and nutritive value of rice straw after treatment with urea or Coprinus fimetarius in a solid state fermentation system. Anim. Feed Sci. Technol. 26: 81-92 https://doi.org/10.1016/0377-8401(89)90008-4
  36. Sidhu, M. S. and Sandhu, D. K. 1985. A study of ,B-glucosidase in Trichoderma pseudokoningii : Production, localization and regulation. Exp. Mycol. 9: 1-8
  37. Snedecor, G W. and Cochran, W. G 1982. Statistical methods. 6th ed. Blackwell Science Ltd., London, UK
  38. Srinivasan, V. R. 1979. Production of single-cell protein from cellulose. Pp 132-137. In: Bioconversion of organic residues for rural communities. Louisiana State Univ., Baton Rouge, Louisiana, USA
  39. Tappi Standards. 1957. Technical association of the pulp and paper industry, New York
  40. Tengerdy, R. P. and Szakacs, G 2003. Bioconversion of lignocellulose in solid substrate fermentation. Biochem. Engin. J. 13: 169-179 https://doi.org/10.1016/S1369-703X(02)00129-8
  41. Thanikachalam, A. and Rangarajan, M. 1992. Bioconversion of rice straw into protein rich feed. Madras Agric. J. 79: 138-141
  42. Wilde, S. A., Voigt, G K. and Iyer, J. G 1972. In: Chesters, G Ed. Soil and Plant Analysis for Tree Culture. 4th ed. Oxford and IBH Publishing Co
  43. Wise, H. D. and Schaefer, M. 1994. Decomposition of leaf litter in a mull beech forest : Comparison between canopy and herbaceous species. Pedobiologia 38: 269-288
  44. Xuexia, Y., Hongzhang, C., Hongliang, G, Zuohu, L., Yang, X. X., Chen, H. Z., Gao, H. L. and Li, Z. H. 2001. Bioconversion of corn straw by coupling ensiling and solid-state fermentation. Biores. Technol. 78: 277-280 https://doi.org/10.1016/S0960-8524(01)00024-4
  45. Youssef, B. M. and Aziz, N. H. 1999. Influence of gamma-irradiation on the bioconversion of rice straw by Trichoderma viride into single cell protein. Cytobios 97: 171-183
  46. Zadrazil, F. 1977. The conversion of straw into feed by basidiomycetes. Eur. J. Appl. Microbiol. 4: 273-281 https://doi.org/10.1007/BF00931264

피인용 문헌

  1. Bioconversion of Straw into Improved Fodder: Fungal Flora Decomposing Rice Straw vol.33, pp.3, 2005, https://doi.org/10.4489/MYCO.2005.33.3.150
  2. Bioconversion of Straw into Improved Fodder: Preliminary Treatment of Rice Straw Using Mechanical, Chemical and/or Gamma Irradiation vol.34, pp.1, 2006, https://doi.org/10.4489/MYCO.2006.34.1.014
  3. single cell protein production from rice straw pulp in solid state fermentation vol.345, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/345/1/012043