DOI QR코드

DOI QR Code

Production of Xylanolytic Enzyme Complex from Aspergillus flavus using Agricultural Wastes

  • 발행 : 2005.06.30

초록

Five types of agricultural wastes were used for the production of xylanolytic enzyme by Aspergillus flavus K-03. All wastes materials supported high levels of xylanase and ${\beta}-xylosidase$ production. A high level of proteolytic activity was observed in barley and rice bran cultures, while only a weak proteolytic activity was detected in corn cob, barley and rice straw cultures. Maximum production of xylanase was achieved in basal liquid medium containing rice barn as carbon source for 5 days of culture at pH 6.5 and $25^{\circ}C$. The xylanolytic enzyme of A. flavus K-03 showed low thermostability. The times required for 50% reduction of the initial enzyme activity were 90 min at $40^{\circ}C$, 13 min at $50^{\circ}C$, and 3 min at $60^{\circ}C$. Xylanolytic activity showed the highest level at pH $5.5{\sim}10.5$ and more than 70% of the original activity was retained at pH 6.5 and 7.0. The higher stability of xylanolytic enzymes in the broad range of alkaline pH is useful for utilization of the enzymes in industrial process requiring in alkaline conditions. Moreover, the highest production of xylanolytic enzyme was obtained when 0.5% of rice bran was supplied in basal liquid medium. SDS-PAGE analysis revealed a single xylanase band of approximately 28.5 kDa from the culture filtrates.

키워드

참고문헌

  1. Abdel-Satar, M. A. and EI-Said, A. H. M. 2001. Xylan-decomposing fungi and xylanolytic activity in agricultural and industrial wastes. Int. Biodeterior. Biodegrad. 47: 15-21 https://doi.org/10.1016/S0964-8305(00)00113-X
  2. Bhat, M. K. 2000. Cellulases and related enzymes in biotechnology. Biotech. Advan. 18: 355-383 https://doi.org/10.1016/S0734-9750(00)00041-0
  3. Blanko, A. and Pastor, F. I. J. 1993. Characterization of cellulosefree xylanases from the newly isolated Bacillus sp. strain BP23. Can. J Microbiol. 39: 1162-1166 https://doi.org/10.1139/m93-175
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Carmona, E. C., Pizzironi-Kleiner, A A., Monteiro, R. T. R. and Jorge, J. A 1997. Xylanase production by Aspergillus versicolor. J. Basic Microbiol. 38: 387-394
  6. Chandra, R. K. and Chandra, T. S. 1996. Purification and characterization of xylanase from alkali-tolerant Aspergillus fischeri Fxn1. FEMS Microbiol. Lett. 145: 457-461 https://doi.org/10.1111/j.1574-6968.1996.tb08616.x
  7. Christov, L. P., Szakacs, G and Balakrishnan, H. 1999. Production, partial characterization and use of fungal cellulose-free xylanases in pulp bleaching. Process Biochem. 34: 511-517 https://doi.org/10.1016/S0032-9592(98)00117-4
  8. Coelho, G D. and Carmona, E. C. 2003. Xylanolytic complex from Aspergillus giganteus: production and characterization. J. Basic Microbiol. 43: 269-277 https://doi.org/10.1002/jobm.200390030
  9. Coughlan, M. P. and Hazlewood, G P. 1993. ,$\beta$-l,4-d-Xylandegrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17: 259-289
  10. Damaso, M. C. T., Andrade, C. M. M. C. and Pereira, N. Jr. 2000. Use of com cob for endoxylanase production by thermophilic fungus Termomyces lanuginosus I OC-4115. Appl. Biochem. Biotechnol. 84-86: 821-834
  11. Duenas, R., Tengerdy, R. P. and Gutierrez-Correa, M. 1995. Cellulose production by mixed fungi in solid-substrate fermentation of bagasse. World J. Microbiol. Biotechnol. 11: 333-337 https://doi.org/10.1007/BF00367112
  12. Fernandes-Espinar, M. T., Ramun, D., Pifiaga, F. and Valles, S. 1992. Xylanase production by Aspergillus nidulans. FEMS Microbiol. Lett. 91: 91-96 https://doi.org/10.1111/j.1574-6968.1992.tb05190.x
  13. Ferreira, G, Boer, C. G and Peralta, R. M. 1999. Production of xylanolytic enzymes by Aspergillus tamarii in solid state fermentation. FEMS Microbiol. Lett. 173: 335-339 https://doi.org/10.1111/j.1574-6968.1999.tb13522.x
  14. Flores, M. E., Perea, M., Rodiguez, O., Malvaez, A and Huitr6n, C. 1996. Physiological studies on induction and catabolite repression of ,$\beta$-xylosidase and endoxylanase in Streptomyces sp. CH-M-1035. J. Biotechnol. 49: 179-187 https://doi.org/10.1016/0168-1656(96)01542-8
  15. Haddad, S. G 2000. Associative effects of supplementing barley straw diets with alfalfa hay on rumen environment and nutrient intake and digestibility for ewes. Anim. Feed. Sci. Technol. 87: 163-171 https://doi.org/10.1016/S0377-8401(00)00203-0
  16. Haltrich, D., Nidetzky, B. Kulbe, K. D., Steiner, W. and Zupancic, S. 1996. Production of fungal xylanases. Bioresour. Technol. 58: 137-161 https://doi.org/10.1016/S0960-8524(96)00094-6
  17. Hoebler, C., Guillon, F., Fardet, A, Cgerbut, C. and Barry, J.-L. 1998. Gastrointestinal or simulated in vitro digestion changes dietary fibre properties and their fermentation. J. Sci. Food Agric. 77: 327-333 https://doi.org/10.1002/(SICI)1097-0010(199807)77:3<327::AID-JSFA41>3.0.CO;2-5
  18. Kadowaki, M. K., Pacheco, M. A C. and Peralta, R. M. 1995. Xylanase production by Aspergillus isolated grown on com cob. Rev. Microbiol. 26: 219-223
  19. Kim, J.-D. 2003. Keratinolytic activity of five Aspergillus species isolated from poultry farming soil in Korea. Mycobiology 31: 157-161 https://doi.org/10.4489/MYCO.2003.31.3.157
  20. Kulkarni, N., Shendye, A and Rao, M. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456 https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  21. Lan-Phan, P., Taillandier, P., Delmas, M. and Strehaiano, P. 1998. Production of xylanases by Bacillus polymyxa using lignocellulosic wastes. Ind. Crop. Prod. 7: 195-203 https://doi.org/10.1016/S0926-6690(97)00048-4
  22. Lemos, I. L. S., Bon, E. P. S., Santanna, M. F. E. and Pereira, N. Jr. 2000. Thermal stability of xylanases produced by Aspergillus tamarii. Braz. J Microbiol. 31: 206-211
  23. Liu, W., Lu, Y. and Ma, G 1999. Induction and glucose repression of endo-$\beta$-xylanase in the yeast Trichospora cutaneum SL 409. Process Biochem. 34: 67-72 https://doi.org/10.1016/S0032-9592(98)00071-5
  24. Madrid, J., Hernandez, F. and Megas, M. D. 1999. Comparison of in vitro techniques for predicting digestibility of mixed cereal straw and citrus by-product diets in goats. J Sci. Food. Agric. 79: 567-572 https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4<567::AID-JSFA220>3.0.CO;2-D
  25. Mes-Hartree, M., Hogan, C. M. and Saddler, J. N. 1998. Influence of growth substrate on production of cellulose enzymes by Trichoderma harzianum E58. Biotechnol. Bioeng. 31: 725-729 https://doi.org/10.1002/bit.260310715
  26. Miller, G L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  27. Prakash, P., Reddy, D. V., Ramachandra-Reddy, R. and Krishna, N. 1996. The catalytic effect of supplementation of protein meals on utilization of rice straw-poultry droppings-rice bran diet in buffaloes. Anim. Food Sci. Technol. 63: 229-243 https://doi.org/10.1016/S0377-8401(96)01020-6
  28. Rani, D. S. and Nand, K. 2000. Production of thermostable cellulose-tree xylanase by Clostridium absonum CFR-702. Process Biochem. 36: 355-362 https://doi.org/10.1016/S0032-9592(00)00224-7
  29. Raper, K. B. and Fennel, D. I. 1965. The Genus Aspergillus. The Williams & Wilkins Company. Baltimore, U.S.A
  30. Ryu, S.-N., Park, S.-Z., Kim, H.-Y., Han, S.-J. and Ku, B.-I. 2002. C-G content rice bran obtained from different degrees of polishing in black purple rice, Heugjinjubyeo. Kor. J Breed. 34: 299-302
  31. Smith, D. C. and Wood, T. M. 1991. Xylanase production by Aspergillus awamori. Development of a medium and optimization of the fermentation parameters for the production of extracellular xylanase and $\beta$-xylosidase while maintaining low protease production. Biotechnol. Bioeng. 38: 883-890 https://doi.org/10.1002/bit.260380810
  32. Souza, D. F., Souza, C. G M. and Peralta, R. M. 2001. Effect of easily metabolizable sugars in the production of xylanase by Aspergillus tamari in solid-state fermentation. Process Biochem. 36: 835-838 https://doi.org/10.1016/S0032-9592(00)00295-8
  33. Taiz, L. and Honigman, W. A. 1976. Production of cell hydrolyzing enzyme by barley aleurone layer in response to gibberellic acid. Plant Physiol. 58: 380-386 https://doi.org/10.1104/pp.58.3.380
  34. Takagi, M. 1987. Pretreatment of lignocellulosic materials with hydrogen peroxide in presence of manganese compounds. Biotechnol. Boeng. 29: 165-170 https://doi.org/10.1002/bit.260290204
  35. Walsh, G and Headon, D. 1994. Downstream processing. pp. 107-109. In Protein Biotechnology, John Wiley and Sons, UK
  36. Wong, K. K. I., Tan, L. U. I. and Saddler, J. N. 1988. Multiplicity of $\beta$1,4-xylanase in microorganisms: function and application. Microbiol. Rev. 52: 305-317

피인용 문헌

  1. with the unique properties in production of xylooligosaccharides pp.0233111X, 2019, https://doi.org/10.1002/jobm.201800545