DOI QR코드

DOI QR Code

QR-SUBMANIFOLDS OF MAXIMAL QR-DIMENSION IN QUATERNIONIC PROJECTIVE SPACE

  • Kim, Hyang-Sook (Department of Computational Mathematics School of Computer Aided Science Inje University) ;
  • Pak, Jin-Suk (Department of Mathematics Kyungpook National University)
  • Published : 2005.07.01

Abstract

The purpose of this paper is to study n-dimensional QR-submanifolds of maximal QR-dimension isometrically immersed in a quaternionic projective space and to give sufficient conditions in order for such a submanifold to be a tube over a quaternionic invariant submanifold.

Keywords

References

  1. A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986
  2. J. Berndt, Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math. 419 (1991), 9-26
  3. B. Y. Chen, Geometry of submanifolds, Marcel Dekker Inc., New York, 1973
  4. M. Djoric and M. Okumura, Certain application of an integral formula to CR submanifold of complex projective space, Publ. Math. Debrecen 62 (2003), 213- 225
  5. S. Ishihara, Quaternion Kaehlerian manifolds, J. Differential Geom. 9 (1974), 483-500 https://doi.org/10.4310/jdg/1214432544
  6. S. Ishihara and M. Konishi, Diffential geometry of fibred spaces, Publication of the study group of geometry, vol. 8, Tokyo, 1973
  7. Y. Y. Kuo, On almost contact 3-structure, Tohoku Math. J. 22 (1970), 325-332 https://doi.org/10.2748/tmj/1178242759
  8. J.-H. Kwon and J. S. Pak, Codimension reduction for real submanifolds of quaternionic projective space, J. Korean Math. Soc. 36 (1999), 109-123
  9. J.-H. Kwon and J. S. Pak, Scalar curvature of QR-submanifolds immersed in a quaternionic pro- jective space, Saitama Math. J. 17 (1999), 47-57
  10. J.-H. Kwon and J. S. Pak, QR-submanifolds of (p-1) QR-dimension in a quaternionic projective space $QP^{(n+p)/4}$, Acta Math. Hungar. 86 (2000), 89-116 https://doi.org/10.1023/A:1006795518714
  11. H. B. Lawson, Jr., Rigidity theorems in rank-1 symmetric spaces, J. Differential Geom. 4 (1970), 349-357 https://doi.org/10.4310/jdg/1214429508
  12. J. S. Pak, Real hypersurfaces in quaternionic Kaehlerian manifolds with con- stant Q-sectional curvature, Kodai Math. J. 29 (1977), 22-61 https://doi.org/10.2996/kmj/1138833571
  13. P. Ryan, Homogeneity and some curvature condition for hypersurfaces, Tohoku Math. J. 21 (1969), 363-388 https://doi.org/10.2748/tmj/1178242949
  14. Y. Shibuya, Real submanifolds in a quaternionic projective space, Kodai Math. J. 1 (1978), 421-439 https://doi.org/10.2996/kmj/1138035651
  15. K. Yano, On harmonic and Killing vector fields, Ann. of Math. 55 (1952), 38-45 https://doi.org/10.2307/1969418

Cited by

  1. On submersion and immersion submanifolds of a quaternionic projective space vol.8, pp.1, 2016, https://doi.org/10.1515/ausm-2016-0001
  2. Scalar curvature of QR-submanifolds with maximal QR-dimension in a quaternionic projective space vol.42, pp.2, 2011, https://doi.org/10.1007/s13226-011-0007-7
  3. CERTAIN CLASS OF QR-SUBMANIFOLDS OF MAXIMAL QR-DIMENSION IN QUATERNIONIC SPACE FORM vol.35, pp.2, 2013, https://doi.org/10.5831/HMJ.2013.35.2.147