DOI QR코드

DOI QR Code

SOME RECURRENCE RELATIONS OF MULTIPLE ORTHOGONAL POLYNOMIALS

  • Lee, Dong-Won (Department of Mathematics Teachers College Kyungpook National Universtiy)
  • Published : 2005.07.01

Abstract

In this paper, we first find a necessary and sufficient condition for the existence of multiple orthogonal polynomials by the moments of a pair of measures $(d{\mu},\;dv)$ and then give representations for multiple orthogonal polynomials. We also prove four term recurrence relations for multiple orthogonal polynomials of type II and several interesting relations for multiple orthogonal polynomials are given. A generalized recurrence relation for multiple orthogonal polynomials of type I is found and then four term recurrence relations are obtained as a special case.

Keywords

References

  1. A. Angelesco, Sur l'approximation simultanee de plusieurs integrales definies, C. R. Math. Acad. Sci. Paris 167 (1918), 629-631
  2. A. I. Aptekarev, Multiple orthogonal polynomials, J. Comput. Appl. Math. 99 (1998), 423-447 https://doi.org/10.1016/S0377-0427(98)00175-7
  3. A. I. Aptekarev, A. Branquinho, and W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc. 355 (2003), 3887-3914 https://doi.org/10.1090/S0002-9947-03-03330-0
  4. A. I. Aptekarev and H. Stahl, Asymptotics of Hermite-Pade polynomials, Progress in Approximation Theory, in A. Gonchar and E.B. Saff (Eds.) Springer Ser. Comput. Math. 19 (1992), 127-167 https://doi.org/10.1007/978-1-4612-2966-7_6
  5. J. Arvesu, J. Coussement, and W. Van Assche, Some discrete multiple orthogonal polynomials, J. Comput. Appl. Math. 153 (2003), 19-45 https://doi.org/10.1016/S0377-0427(02)00597-6
  6. B. Beckermann, J. Coussement, and W. Van Assche, Multiple Wilson and Jacobi-Pineiro polynomials, J. Approx. Theory 132 (2005), 155-181 https://doi.org/10.1016/j.jat.2004.12.001
  7. C. Brezinski and J. Van Iseghem, Vector orthogonal polynomials of dimension -d, Approximation and computation (West Lafayette, IN, 1993), Internat. Ser. Numer. Math. 119 (1994), 29-39
  8. M. G. de Bruin, Simultaneous Pade approximants and orthogonality, Lecture Notes in Math. 1171 (1985), 74-83 https://doi.org/10.1007/BFb0076532
  9. J. Coussement and W. Van Assche, Gauss quadrature for multiple orthogonal polynomials, J. Comput. Appl. Math. 178 (2005), 131-145 https://doi.org/10.1016/j.cam.2004.04.016
  10. V. A. Kalyagin, Hermite-Pade approximants and spectral analysis of nonsymmetric operators, Mat. Sb. 185 (1994), 79-100
  11. V. A. Kalyagin, Hermite-Pade approximants and spectral analysis of nonsymmetric operators, Sb. Mat. 82 (1995), 199-1216 https://doi.org/10.1070/SM1995v082n01ABEH003558
  12. K. Mahler, Perfect systems, Compositio Math. 19 (1968), 95-166
  13. E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Trans. Amer. Math. Soc. 92 (1991)
  14. V. N. Sorokin and J. Van Iseghem, Algebraic aspects of matrix orthogonality for vector polynomials, J. Approx. Theory 90 (1997), 97-116 https://doi.org/10.1006/jath.1996.3064
  15. W. Van Assche and E. Coussement, Some classical multiple orthogonal polyno-mials, J. Comput. Appl. Math. 127 (2001), 317-347 https://doi.org/10.1016/S0377-0427(00)00503-3
  16. J. Van Iseghem, Recurrence relations in the table of vector orthogonal polynomi- als, Nonlinear Numerical Methods and Rational Approximation II, Math. Appl. 296 (1994), 61-69