DOI QR코드

DOI QR Code

Quantum Mechanical Studies for Proton Transfer in HOCl + HCl and H2O + ClONO2 on Water Clusters

  • Published : 2005.12.20

Abstract

We have performed high-level quantum mechanical calculation for multiple proton transfer in HOCl + HCl and $H_2O$ + $ClONO_2$ on water clusters, which can be used as a model of the reactions on ice surface in stratospheric clouds. Multiple proton transfer on ice surface plays crucial role in these reactions. The structures of the clusters with 0-3 water molecules and the transition state structures for the multiple proton transfer have been calculated. The energies and barrier heights of the proton transfer were calculated at various levels of theory including multi-coefficient correlated quantum mechanical methods (MCCM) that have recently been developed. The transition state structures and the predicted reaction mechanism depend very much on the level of theory. In particular, the HF level can not correctly predict the TS structure and barrier heights, so the electron correlation should be considered appropriately.

Keywords

References

  1. Cicerone, R. J. Science 1987, 237, 35 https://doi.org/10.1126/science.237.4810.35
  2. Crutzen, P. J.; Arnold, F. Nature 1986, 324, 651 https://doi.org/10.1038/324651a0
  3. Farman, J. C.; Gardiner, B. G.; Shanklin, J. D. Nature 1985, 315, 207 https://doi.org/10.1038/315207a0
  4. Leu, M. T. Geophys. Res. Lett. 1988, 15, 17 https://doi.org/10.1029/GL015i001p00017
  5. McElroy, M. B.; Salawitch, R. J.; Wofsy, S. C. Geophys. Res. Lett. 1986, 13, 1296 https://doi.org/10.1029/GL013i012p01296
  6. Molina, M. J.; Tso, T.; Molina, L. T.; Wang, F. C. Science 1987, 238, 1253 https://doi.org/10.1126/science.238.4831.1253
  7. Molina, M. J.; Molina, L. T.; Kolb, C. E. Annu. Rev. Phys. Chem. 1996, 47, 327 https://doi.org/10.1146/annurev.physchem.47.1.327
  8. Solomon, S.; Garcia, R. R.; Rowland, F. S.; Wuebbles, D. J. Nature 1986, 321, 755 https://doi.org/10.1038/321755a0
  9. Solomon, S. Rev. Geophys. 1988, 26, 131 https://doi.org/10.1029/RG026i001p00131
  10. Tolbert, M. A.; Rossi, M. J.; Malhotra, R.; Golden, D. M. Science 1987, 238, 1258 https://doi.org/10.1126/science.238.4831.1258
  11. Toon, O. B.; Kamill, P.; Turco, R. P.; Pinto, J. Geophys. Res. Lett. 1986, 13, 1284 https://doi.org/10.1029/GL013i012p01284
  12. Wennberg, P. O. Science 1994, 266, 398 https://doi.org/10.1126/science.266.5184.398
  13. Hanson, D. R. J. Phys. Chem. 1995, 99, 13059 https://doi.org/10.1021/j100035a003
  14. Sodeau, J. R.; Horn, A. B.; Banham, S. F.; Koch, T. G. J. Chem. Phys. 1995, 99, 6258 https://doi.org/10.1021/j100016a073
  15. Bianco, R.; Thompson, W. H.; Morita, A.; Hynes, J. T. J. Phys. Chem. A 2001, 105, 3132 https://doi.org/10.1021/jp002599v
  16. Bianco, R.; Hynes, J. T. J. Phys. Chem. A 1998, 102, 309 https://doi.org/10.1021/jp970466c
  17. Zhou, Y.-F.; Liu, C.-B. Int. J. Quantum Chem. 2000, 78, 281 https://doi.org/10.1002/(SICI)1097-461X(2000)78:4<281::AID-QUA10>3.0.CO;2-P
  18. Xu, S. C. J. Chem. Phys. 1999, 111, 2242 https://doi.org/10.1063/1.479565
  19. Richardson, S. L.; Francisco, J. S.; Mebel, A. M.; Morokuma, K. Chem. Phys. Lett. 1997, 271, 395
  20. Liu, Z. F.; Siu, C. K.; Tse, J. S. Chem. Phys. Lett. 1999, 309, 335 https://doi.org/10.1016/S0009-2614(99)00683-1
  21. Xu, S. C.; Zhao, X. S. J. Phys. Chem. A 1999, 103, 2100 https://doi.org/10.1021/jp9814045
  22. Voegele, A. F.; Tautermann, C. S.; Loerting, T.; Liedl, K. R. J. Phys. Chem. A 2002, 106, 7850 https://doi.org/10.1021/jp0255583
  23. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Rev. A. 9; Gaussian, Inc.: Pittsburgh, PA, 1998
  24. Fast, P. L.; Corchado, J. C.; Sanchez, M. L.; Truhlar, D. G. J. Phys. Chem. 1999, 103, 5129 https://doi.org/10.1021/jp9903460
  25. Fast, P. L.; Corchado, J. C.; Sanchez, M. L.; Truhlar, D. G. J. Phys. Chem. A 1999, 103, 3139 https://doi.org/10.1021/jp9900382
  26. Fast, P. L.; Sanchez, M. L.; Corchado, J. C.; Truhlar, D. G. J. Chem. Phys. 1999, 110, 11679 https://doi.org/10.1063/1.479112
  27. Fast, P. L.; Sanchez, M. L.; Truhlar, D. G. Chem. Phys. Lett. 1999, 306, 407 https://doi.org/10.1016/S0009-2614(99)00493-5
  28. Fast, P. L.; Truhlar, D. G. J. Phys. Chem. 2000, 104, 6111 https://doi.org/10.1021/jp000408i
  29. Tratz, C. M.; Fast, P. L.; Truhlar, D. G. PhysChemComm 1999, 2, 1 https://doi.org/10.1039/a900479c
  30. Rodgers, J. M.; Lynch, B. J.; Fast, P. L.; Zhao, Y.; Pu, J.; Chuang, Y.-Y.; Truhlar, D. G. Multilevel-version 3.1; University of Minnesota: Minneapolis, MN, 2003
  31. Hiraoka, K.; Takimoto, H.; Yamabe, S. J. Phys. Chem. 1986, 90, 5910 https://doi.org/10.1021/j100280a090
  32. Valeev, E. F.; Schaefer III, H. F. J. Chem. Phys. 1998, 108, 7197 https://doi.org/10.1063/1.476137
  33. Xie, Y.; Remington, R. B.; Schaefer III, H. F. J. Chem. Phys. 1994, 101, 4878 https://doi.org/10.1063/1.467409
  34. Park, C.-Y.; Kim, Y.; Kim, Y. J. Chem. Phys. 2001, 115, 2926

Cited by

  1. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  2. A comparison between hydrogen and halogen bonding: the hypohalous acid-water dimers, HOX⋯H2O (X = F, Cl, Br) vol.21, pp.11, 2005, https://doi.org/10.1039/c9cp00422j